Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Automorphic images of commutative subspace lattices


Authors: K. J. Harrison and W. E. Longstaff
Journal: Trans. Amer. Math. Soc. 296 (1986), 217-228
MSC: Primary 46C10; Secondary 06B99, 47A15, 47D25
DOI: https://doi.org/10.1090/S0002-9947-1986-0837808-1
MathSciNet review: 837808
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ C(H)$ denote the lattice of all (closed) subspaces of a complex, separable Hilbert space $ H$. Let $ ({\text{AC)}}$ be the following condition that a subspace lattice $ \mathcal{F} \subseteq C(H)$ may or may not satisfy: (AC)

\begin{displaymath}\begin{array}{*{20}{c}} {\mathcal{F} = \phi (\mathcal{L})\;{\... ...;{\text{lattice}}\;\mathcal{L} \subseteq C(H).} \\ \end{array} \end{displaymath}

Then $ \mathcal{F}$ satisfies $ ({\text{AC}})$ if and only if $ \mathcal{A} \subseteq \mathcal{B}$ for some Boolean algebra subspace lattice $ \mathcal{B} \subseteq C(H)$ with the property that, for every $ K,L \in \mathcal{B}$, the vector sum $ K + L$ is closed. If $ \mathcal{F}$ is finite, then $ \mathcal{F}$ satisfies $ ({\text{AC}})$ if and only if $ \mathcal{F}$ is distributive and $ K + L$ is closed for every $ K,L \in \mathcal{F}$. In finite dimensions $ \mathcal{F}$ satisfies $ ({\text{AC}})$ if and only if $ \mathcal{F}$ is distributive. Every $ \mathcal{F}$ satisfying $ ({\text{AC}})$ is reflexive. For such $ \mathcal{F}$, given vectors $ x,y \in H$, the solvability of the equation $ Tx = y$ for $ T \in \operatorname{Alg}\,\mathcal{F}$ is investigated.

References [Enhancements On Off] (What's this?)

  • [1] W. B. Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) 100 (1974), 433-532. MR 0365167 (51:1420)
  • [2] W. G. Bade, Weak and strong limits of spectral operators, Pacific J. Math. 4 (1954), 393-413. MR 0063567 (16:144a)
  • [3] -, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345-360. MR 0073954 (17:513d)
  • [4] R. Baer, Linear algebra and projective geometry, Academic Press, New York, 1952. MR 0052795 (14:675j)
  • [5] J. B. Conway, A complete Boolean algebra of subspaces which is not reflexive, Bull. Amer. Math. Soc. 79 (1973), 720-722. MR 0320778 (47:9312)
  • [6] K. R. Davidson, Commutative subspace lattices, Indiana Univ. Math. J. (3) 27 (1978), 479-490. MR 0482264 (58:2340)
  • [7] T. Donnellan, Lattice theory, Pergamon Press, London, 1968. MR 0233738 (38:2059)
  • [8] N. Dunford and J. T. Schwartz, Linear operators. Part III: Spectral operators, Wiley, New York, 1971. MR 1009164 (90g:47001c)
  • [9] P. A. Fillmore and W. E. Longstaff, On isomorphisms of lattices of closed subspaces, Canad. J. Math. (5) 36 (1984), 820-829. MR 762744 (86c:46012)
  • [10] P. R. Halmos, Reflexive lattices of subspaces, J. London Math. Soc. 4 (1971), 257-263. MR 0288612 (44:5808)
  • [11] A. Hopenwasser, The equation $ Tx = y$ in a reflexive operator algebra, Indiana Univ. Math. J. (1) 29 (1980), 121-126. MR 554821 (81c:47014)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46C10, 06B99, 47A15, 47D25

Retrieve articles in all journals with MSC: 46C10, 06B99, 47A15, 47D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0837808-1
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society