Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On excursions of reflecting Brownian motion


Author: Pei Hsu
Journal: Trans. Amer. Math. Soc. 296 (1986), 239-264
MSC: Primary 60J60; Secondary 60J50, 60J55, 60J65
DOI: https://doi.org/10.1090/S0002-9947-1986-0837810-X
MathSciNet review: 837810
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the properties of excursions of reflecting Brownian motion on a bounded smooth domain in $ {R^d}$ and give a procedure for constructing the process from the excursions and the boundary process. Our method is computational and can be applied to general diffusion processes with reflecting type boundary conditions on compact manifolds.


References [Enhancements On Off] (What's this?)

  • [1] M. Aizenman and B. Simon, Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), 200-271. MR 644024 (84a:35062)
  • [2] K. L. Chung, Excursions in Brownian motion, Ark. Mat. 14 (1976), 155-177. MR 0467948 (57:7791)
  • [3] -, Lectures from Markov processes to Brownian motion, Springer-Verlag, New York, 1980.
  • [4] R. Getoor, Excursions of a Markov process, Ann. Probab. 7 (1979), 244-266. MR 525052 (80j:60103)
  • [5] P. Hsu, A generalization of Tanaka's formula, preprint, 1984.
  • [6] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland and Kodansha, Amsterdam, Oxford, New York, 1981. MR 1011252 (90m:60069)
  • [7] K. Itô and H. P. McKean, Diffusion processes and their sample paths, Springer-Verlag, New York, 1974. MR 0345224 (49:9963)
  • [8] P. A. Jacobs, Excursions of a Markov process induced by continuous additive functionals, Z. Wahrsch. Verw. Gebiete 44 (1978), 325-336. MR 509205 (80a:60099)
  • [9] F. Knight, Essentials of Brownian motion and diffusion, Math. Survey, no. 18, Amer. Math. Soc., Providence, R.I., 1981. MR 613983 (82m:60098)
  • [10] J. P. Lepeltier and B. Marchal, Problème des martingales et equations différentielles stochastiques associées à un opérateur integro-différentiel, Ann. Inst. H. Poincaré Sect. B (N.S.) 12 (1976), 43-103. MR 0413288 (54:1403)
  • [11] B. Maisonneuve Exit systems, Ann. Probab. 3 (1975), 399-411. MR 0400417 (53:4251)
  • [12] K. Sato A decomposition of Markov processes, J. Math. Soc. Japan 17 (1965), 219-243. MR 0182060 (31:6284)
  • [13] K. Sato and T. Ueno, Multidimensional diffusions and the Markov processes on the boundary, J. Math. Kyoto Univ. 4-3 (1965), 529-605. MR 0198547 (33:6702)
  • [14] J. Sylvester and G. Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection, preprint. MR 820341 (87j:35377)
  • [15] S. Watanabe, Construction of diffusion processes with Wentzell's boundary conditions by means of Poisson point process of excursions, Probability Theory, Banach Center Publications, vol. 5, Warsaw, 1979, pp. 255-271. MR 561485 (82a:60119)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J60, 60J50, 60J55, 60J65

Retrieve articles in all journals with MSC: 60J60, 60J50, 60J55, 60J65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0837810-X
Keywords: Reflecting Brownian Motion, boundary process, point process of excursions, excursion laws
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society