Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On excursions of reflecting Brownian motion


Author: Pei Hsu
Journal: Trans. Amer. Math. Soc. 296 (1986), 239-264
MSC: Primary 60J60; Secondary 60J50, 60J55, 60J65
MathSciNet review: 837810
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the properties of excursions of reflecting Brownian motion on a bounded smooth domain in $ {R^d}$ and give a procedure for constructing the process from the excursions and the boundary process. Our method is computational and can be applied to general diffusion processes with reflecting type boundary conditions on compact manifolds.


References [Enhancements On Off] (What's this?)

  • [1] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators, Comm. Pure Appl. Math. 35 (1982), no. 2, 209–273. MR 644024, 10.1002/cpa.3160350206
  • [2] Kai Lai Chung, Excursions in Brownian motion, Ark. Mat. 14 (1976), no. 2, 155–177. MR 0467948
  • [3] -, Lectures from Markov processes to Brownian motion, Springer-Verlag, New York, 1980.
  • [4] R. K. Getoor, Excursions of a Markov process, Ann. Probab. 7 (1979), no. 2, 244–266. MR 525052
  • [5] P. Hsu, A generalization of Tanaka's formula, preprint, 1984.
  • [6] Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
  • [7] Kiyosi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Springer-Verlag, Berlin-New York, 1974. Second printing, corrected; Die Grundlehren der mathematischen Wissenschaften, Band 125. MR 0345224
  • [8] P. A. Jacobs, Excursions of a Markov process induced by continuous additive functionals, Z. Wahrsch. Verw. Gebiete 44 (1978), no. 4, 325–336. MR 509205, 10.1007/BF01013195
  • [9] Frank B. Knight, Essentials of Brownian motion and diffusion, Mathematical Surveys, vol. 18, American Mathematical Society, Providence, R.I., 1981. MR 613983
  • [10] J.-P. Lepeltier and B. Marchal, Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel, Ann. Inst. H. Poincaré Sect. B (N.S.) 12 (1976), no. 1, 43–103 (French). MR 0413288
  • [11] Bernard Maisonneuve, Exit systems, Ann. Probability 3 (1975), no. 3, 399–411. MR 0400417
  • [12] Keniti Sato, A decomposition of Markov processes, J. Math. Soc. Japan 17 (1965), 219–243. MR 0182060
  • [13] Keniti Sato and Tadashi Ueno, Multi-dimensional diffusion and the Markov process on the boundary, J. Math. Kyoto Univ. 4 (1964/1965), 529–605. MR 0198547
  • [14] John Sylvester and Gunther Uhlmann, A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math. 39 (1986), no. 1, 91–112. MR 820341, 10.1002/cpa.3160390106
  • [15] Shinzo Watanabe, Construction of diffusion processes with Wentzell’s boundary conditions by means of Poisson point processes of Brownian excursions, Probability theory (Papers, VIIth Semester, Stefan Banach Internat. Math. Center, Warsaw, 1976) Banach Center Publ., vol. 5, PWN, Warsaw, 1979, pp. 255–271. MR 561485

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J60, 60J50, 60J55, 60J65

Retrieve articles in all journals with MSC: 60J60, 60J50, 60J55, 60J65


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1986-0837810-X
Keywords: Reflecting Brownian Motion, boundary process, point process of excursions, excursion laws
Article copyright: © Copyright 1986 American Mathematical Society