Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The dual of the Bergman space $ A\sp 1$ in symmetric Siegel domains of type $ {\rm II}$


Author: David Békollé
Journal: Trans. Amer. Math. Soc. 296 (1986), 607-619
MSC: Primary 32M15; Secondary 46E99, 47B38
DOI: https://doi.org/10.1090/S0002-9947-1986-0846599-X
MathSciNet review: 846599
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An affirmative answer is given to the following conjecture of R. Coifman and R. Rochberg: in any symmetric Siegel domain of type II, the dual of the Bergman space $ {A^1}$ coincides with the Bloch space of holomorphic functions and can be realized as the Bergman projection of $ {L^\infty }$.


References [Enhancements On Off] (What's this?)

  • [1] D. Bekolle, Le dual de la classe de Bergman $ {A^1}$ dans le transformé de Cayley de la boule unité de $ {{\mathbf{C}}^n}$, C. R. Acad. Sci. Paris 296 (1983), 377-380. MR 703901 (85b:32004)
  • [2] -, Le dual de la classe de Bergman dans le complexifié du cône sphèrique, C. R. Acad. Sci. Paris 296 (1983), 581-583. MR 705166 (85a:32003)
  • [3] -, Le dual de l'espace des fonctions holomorphes intégrables dans des domaines de Siegel, Ann. Inst. Fourier (Grenoble) 34 (1984), 125-154. MR 762696 (86m:32051)
  • [4] R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $ {L^p}$, Astérisque Soc. Math. France 77 (1980), 11-66. MR 604369 (82j:32015)
  • [5] S. G. Gindikin, Analysis in homogeneous domains, Russian Math. Surveys 19(4) (1964), 1-89. MR 0171941 (30:2167)
  • [6] A. Koranyi and J. A. Wolf, The realization of Hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265-288. MR 0174787 (30:4980)
  • [7] F. Treves, Linear partial differential equations with constant coefficients, Mathematics and its Applications, Vol. 6, Gordon and Breach, New York, 1966. MR 0224958 (37:557)
  • [8] S. Vagi, Harmonic analysis in Cartan and Siegel domains, MAA Studies in Mathematics, Vol. 13, Studies in Harmonic Analysis (J. M. Ash Ed.), 1976. MR 0477178 (57:16719)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32M15, 46E99, 47B38

Retrieve articles in all journals with MSC: 32M15, 46E99, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0846599-X
Keywords: Siegel domain, Bergman space, Bloch space, Bergman projection, Riemann-Liouville differential operator
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society