Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

The dual of the Bergman space $ A\sp 1$ in symmetric Siegel domains of type $ {\rm II}$


Author: David Békollé
Journal: Trans. Amer. Math. Soc. 296 (1986), 607-619
MSC: Primary 32M15; Secondary 46E99, 47B38
MathSciNet review: 846599
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An affirmative answer is given to the following conjecture of R. Coifman and R. Rochberg: in any symmetric Siegel domain of type II, the dual of the Bergman space $ {A^1}$ coincides with the Bloch space of holomorphic functions and can be realized as the Bergman projection of $ {L^\infty }$.


References [Enhancements On Off] (What's this?)

  • [1] David Békollé, Le dual de la classe de Bergman 𝐴¹ dans le transformé de Cayley de la boule unité de 𝐶ⁿ, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 9, 377–380 (French, with English summary). MR 703901 (85b:32004)
  • [2] David Békollé, Le dual de la classe de Bergman 𝐴¹ dans le complexifié du cone sphérique, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 14, 581–583 (French, with English summary). MR 705166 (85a:32003)
  • [3] David Békollé, Le dual de l’espace des fonctions holomorphes intégrables dans des domaines de Siegel, Ann. Inst. Fourier (Grenoble) 34 (1984), no. 3, 125–154 (French, with English summary). MR 762696 (86m:32051)
  • [4] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in 𝐿^{𝑝}, Representation theorems for Hardy spaces, Astérisque, vol. 77, Soc. Math. France, Paris, 1980, pp. 11–66. MR 604369 (82j:32015)
  • [5] S. G. Gindikin, Analysis in homogeneous domains, Uspehi Mat. Nauk 19 (1964), no. 4 (118), 3–92 (Russian). MR 0171941 (30 #2167)
  • [6] Adam Korányi and Joseph A. Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. (2) 81 (1965), 265–288. MR 0174787 (30 #4980)
  • [7] François Trèves, Linear partial differential equations with constant coefficients: Existence, approximation and regularity of solutions, Mathematics and its Applications, Vol. 6, Gordon and Breach Science Publishers, New York, 1966. MR 0224958 (37 #557)
  • [8] Stephen Vági, Harmonic analysis on Cartan and Siegel domains, Studies in harmonic analysis (Proc. Conf., DePaul Univ., Chicago, Ill., 1974), Math. Assoc. Amer., Washington, D.C., 1976, pp. 257–309. MAA Stud. Math., Vol. 13. MR 0477178 (57 #16719)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32M15, 46E99, 47B38

Retrieve articles in all journals with MSC: 32M15, 46E99, 47B38


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1986-0846599-X
PII: S 0002-9947(1986)0846599-X
Keywords: Siegel domain, Bergman space, Bloch space, Bergman projection, Riemann-Liouville differential operator
Article copyright: © Copyright 1986 American Mathematical Society