Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On secondary bifurcations for some nonlinear convolution equations


Authors: F. Comets, Th. Eisele and M. Schatzman
Journal: Trans. Amer. Math. Soc. 296 (1986), 661-702
MSC: Primary 58E07; Secondary 45G10, 82A25, 92A09
DOI: https://doi.org/10.1090/S0002-9947-1986-0846602-7
MathSciNet review: 846602
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: On the $ d$-dimensional torus $ {{\mathbf{T}}^d} = {({\mathbf{R}}/{\mathbf{Z}})^d}$, we study the nonlinear convolution equation

$\displaystyle u(t) = g\{ \lambda \cdot w \ast u(t)\} , \quad t \in {{\mathbf{T}}^d}, \lambda > 0.$

where $ \ast$ is the convolution on $ {{\mathbf{T}}^d}$, $ w$ is an integrable function which is not assumed to be even, and $ g$ is bounded, odd, increasing, and concave on $ {{\mathbf{R}}^ + }$. A typical example is $ g = {\text{th}}$.

For a general function $ w$, we show by the standard theory of local bifurcation that, if the eigenspace of the linearized problem is of dimension $ 2$, a branch of solutions bifurcates at $ \lambda = {(g\prime(0)\hat w(p))^{ - 1}}$ from the zero solution, and we show that it can be extended to infinity.

For special simple forms of $ w$, we show that the first bifurcating branch has no secondary bifurcation, but the other branches can.

These results are related to the theory of spin models on $ {{\mathbf{T}}^d}$ in statistical mechanics, where they allow one to show the existence of a secondary phase transition of first order, and to some models of periodic structures in the brain in neurophysiology.


References [Enhancements On Off] (What's this?)

  • 1. E. Bienenstock, Cooperation and competition in C.N.S. development: a unified approach, Synergetics of the Brain (Proc. Sympos., at Schloss Elmau, 1983, E. Basar et al., eds.), Berlin and New York.
  • [1] O. Diekmann and H. G. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal. 2 (1978), 721-737. MR 512163 (80c:45015)
  • [2] Th. Eisele and R. S. Ellis, Symmetry breaking and random waves for magnetic systems on a circle, Z. Wahrsch. Verw. Gebiete 63 (1983), 297-348. MR 705628 (86b:82003)
  • [3] -, The generalized Curie-Weiss model and the $ d$-body ferromagnetic circle (to appear).
  • [4] R. S. Ellis, J. L. Monroe and C. M. Newman, The GHS and other correlation inequalities for a class of even ferromagnets, Comm. Math. Phys. 46 (1976), 167-182. MR 0395659 (52:16453)
  • [5] G. B. Ermentrout and J. D. Cowan, Large scale spatially organized activity in neural nets, SIAM J. Appl. Math. 38 (1980), 1-21. MR 559077 (81m:92018)
  • [6] -, Secondary bifurcation in neuronal nets, SIAM J. Appl. Math. 39 (1980), 323-340. MR 588504 (81k:92012)
  • [7] D. J. Gates and O. Penrose, The van der Waals limit for classical systems. I. A variational principle, Comm. Math. Phys. 15 (1969), 255-276. MR 0260283 (41:4911)
  • [8] D. O. Hebb, The organization of behavior, Wiley, New York, 1949.
  • [9] U. an der Heiden, Analysis of neural networks, Lecture Notes in Biomathematics, vol. 35, Springer-Verlag, Berlin and New York, 1980. MR 617008 (84b:92020)
  • [10] J. L. van Hemmen, A. C. D. van Enter and J. Canisius, On a classical spin class model, Z. Phys. B 50 (1983), 311-336. MR 703679 (85a:82070)
  • [11] G. Iooss and D. D. Joseph, Elementary stability and bifurcation theory, Springer-Verlag, New York and Berlin, 1980. MR 636256 (83e:34003)
  • [12] O. E. Lanford, Entropy and equilibrium states in classical statistical mechanics, Statistical Mechanics and Mathematical Problems (Battelle Seattle, 1971), Lecture Notes in Phys., vol. 20, Springer-Verlag, 1973, pp. 1-113.
  • [13] Ch. van der Malsburg, Development of ocularity domains and growth behavior of axon terminals, Biol. Cybernet. 32 (1979), 49-62.
  • [14] J. Palis and W. de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York and Berlin, 1982. MR 669541 (84a:58004)
  • [15] G. Ruget, About nucleation, preprint, 1982. MR 783850 (86e:82009)
  • [16] M. Schatzman, Spatial structuration in a model in neurophysiology, preprint, 1982.
  • [17] S. Smale, The mathematics of time, Springer-Verlag, New York and Berlin, 1980. MR 607330 (83a:01068)
  • [18] N. V. Swindale, A model for the formation of ocular dominance stripes, Proc. Roy Soc. London Ser. B 208 (1980), 243-264.
  • [19] -, A model for the formation of orientation columns, Proc. Roy Soc. London Ser. B 215 (1982), 211-230.
  • [20] C. L. Thompson, Mathematical statistical mechanics, Princeton Univ. Press, Princeton, N. J., 1972.
  • [21] A. Vanderbauwhede, Local bifurcation and symmetry, Pitman, Boston, Mass., 1982. MR 697724 (85f:58026)
  • [22] D. J. Willshaw and Ch. van der Malsburg, How patterned neural connections can be set up by self-organization, Proc. Roy Soc. London Ser. B 194 (1976), 431-445.
  • [23] F. Comets, Tunnelling and nucleation for a local mean field model, Ann. Inst. H. Poincaré (to appear). MR 891708 (89a:82004)
  • [24] P. Deuflhard, B. Fiedler and P. Kunkel, Efficient numerical path following beyond critical points, Preprint 278, SFB 123, Heidelberg, 1984. MR 899712 (88i:65072)
  • [25] Th. Eisele, Equilibrium and nonequilibrium theory of a geometric longrange spinglass, Proc. Summer School Les Houches 1984 on Critical Phenomena, Random Systems and Gauge Theories.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E07, 45G10, 82A25, 92A09

Retrieve articles in all journals with MSC: 58E07, 45G10, 82A25, 92A09


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0846602-7
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society