Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On secondary bifurcations for some nonlinear convolution equations


Authors: F. Comets, Th. Eisele and M. Schatzman
Journal: Trans. Amer. Math. Soc. 296 (1986), 661-702
MSC: Primary 58E07; Secondary 45G10, 82A25, 92A09
MathSciNet review: 846602
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: On the $ d$-dimensional torus $ {{\mathbf{T}}^d} = {({\mathbf{R}}/{\mathbf{Z}})^d}$, we study the nonlinear convolution equation

$\displaystyle u(t) = g\{ \lambda \cdot w \ast u(t)\} , \quad t \in {{\mathbf{T}}^d}, \lambda > 0.$

where $ \ast$ is the convolution on $ {{\mathbf{T}}^d}$, $ w$ is an integrable function which is not assumed to be even, and $ g$ is bounded, odd, increasing, and concave on $ {{\mathbf{R}}^ + }$. A typical example is $ g = {\text{th}}$.

For a general function $ w$, we show by the standard theory of local bifurcation that, if the eigenspace of the linearized problem is of dimension $ 2$, a branch of solutions bifurcates at $ \lambda = {(g\prime(0)\hat w(p))^{ - 1}}$ from the zero solution, and we show that it can be extended to infinity.

For special simple forms of $ w$, we show that the first bifurcating branch has no secondary bifurcation, but the other branches can.

These results are related to the theory of spin models on $ {{\mathbf{T}}^d}$ in statistical mechanics, where they allow one to show the existence of a secondary phase transition of first order, and to some models of periodic structures in the brain in neurophysiology.


References [Enhancements On Off] (What's this?)

  • 1. E. Bienenstock, Cooperation and competition in C.N.S. development: a unified approach, Synergetics of the Brain (Proc. Sympos., at Schloss Elmau, 1983, E. Basar et al., eds.), Berlin and New York.
  • [1] Odo Diekmann and Hans G. Kaper, On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal. 2 (1978), no. 6, 721–737. MR 512163, 10.1016/0362-546X(78)90015-9
  • [2] Theodor Eisele and Richard S. Ellis, Symmetry breaking and random waves for magnetic systems on a circle, Z. Wahrsch. Verw. Gebiete 63 (1983), no. 3, 297–348. MR 705628, 10.1007/BF00542534
  • [3] -, The generalized Curie-Weiss model and the $ d$-body ferromagnetic circle (to appear).
  • [4] Richard S. Ellis, James L. Monroe, and Charles M. Newman, The GHS and other correlation inequalities for a class of even ferromagnets, Comm. Math. Phys. 46 (1976), no. 2, 167–182. MR 0395659
  • [5] G. B. Ermentrout and J. D. Cowan, Large scale spatially organized activity in neural nets, SIAM J. Appl. Math. 38 (1980), no. 1, 1–21. MR 559077, 10.1137/0138001
  • [6] G. B. Ermentrout and J. D. Cowan, Secondary bifurcation in neuronal nets, SIAM J. Appl. Math. 39 (1980), no. 2, 323–340. MR 588504, 10.1137/0139028
  • [7] D. J. Gates and O. Penrose, The van der Waals limit for classical systems. I. A variational principle, Comm. Math. Phys. 15 (1969), 255–276. MR 0260283
  • [8] D. O. Hebb, The organization of behavior, Wiley, New York, 1949.
  • [9] Uwe an der Heiden, Analysis of neural networks, Lecture Notes in Biomathematics, vol. 35, Springer-Verlag, Berlin-New York, 1980. MR 617008
  • [10] J. L. van Hemmen, A. C. D. van Enter, and J. Canisius, On a classical spin glass model, Z. Phys. B 50 (1983), no. 4, 311–336. MR 703679, 10.1007/BF01470043
  • [11] Gérard Iooss and Daniel D. Joseph, Elementary stability and bifurcation theory, Springer-Verlag, New York-Berlin, 1980. Undergraduate Texts in Mathematics. MR 636256
  • [12] O. E. Lanford, Entropy and equilibrium states in classical statistical mechanics, Statistical Mechanics and Mathematical Problems (Battelle Seattle, 1971), Lecture Notes in Phys., vol. 20, Springer-Verlag, 1973, pp. 1-113.
  • [13] Ch. van der Malsburg, Development of ocularity domains and growth behavior of axon terminals, Biol. Cybernet. 32 (1979), 49-62.
  • [14] Jacob Palis Jr. and Welington de Melo, Geometric theory of dynamical systems, Springer-Verlag, New York-Berlin, 1982. An introduction; Translated from the Portuguese by A. K. Manning. MR 669541
  • [15] G. Ruget, About nucleation, Mathematical tools and models for control, systems analysis and signal processing, Vol. 3 (Toulouse/Paris, 1981/1982) Travaux Rech. Coop. Programme 567, CNRS, Paris, 1983, pp. 377–393 (English, with French summary). MR 783850
  • [16] M. Schatzman, Spatial structuration in a model in neurophysiology, preprint, 1982.
  • [17] Steve Smale, The mathematics of time, Springer-Verlag, New York-Berlin, 1980. Essays on dynamical systems, economic processes, and related topics. MR 607330
  • [18] N. V. Swindale, A model for the formation of ocular dominance stripes, Proc. Roy Soc. London Ser. B 208 (1980), 243-264.
  • [19] -, A model for the formation of orientation columns, Proc. Roy Soc. London Ser. B 215 (1982), 211-230.
  • [20] C. L. Thompson, Mathematical statistical mechanics, Princeton Univ. Press, Princeton, N. J., 1972.
  • [21] A. Vanderbauwhede, Local bifurcation and symmetry, Research Notes in Mathematics, vol. 75, Pitman (Advanced Publishing Program), Boston, MA, 1982. MR 697724
  • [22] D. J. Willshaw and Ch. van der Malsburg, How patterned neural connections can be set up by self-organization, Proc. Roy Soc. London Ser. B 194 (1976), 431-445.
  • [23] Francis Comets, Nucleation for a long range magnetic model, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, 135–178 (English, with French summary). MR 891708
  • [24] P. Deuflhard, B. Fiedler, and P. Kunkel, Efficient numerical pathfollowing beyond critical points, SIAM J. Numer. Anal. 24 (1987), no. 4, 912–927. MR 899712, 10.1137/0724059
  • [25] Th. Eisele, Equilibrium and nonequilibrium theory of a geometric longrange spinglass, Proc. Summer School Les Houches 1984 on Critical Phenomena, Random Systems and Gauge Theories.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E07, 45G10, 82A25, 92A09

Retrieve articles in all journals with MSC: 58E07, 45G10, 82A25, 92A09


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1986-0846602-7
Article copyright: © Copyright 1986 American Mathematical Society