Above and below subgroups of a lattice-ordered group

Authors:
Richard N. Ball, Paul Conrad and Michael Darnel

Journal:
Trans. Amer. Math. Soc. **297** (1986), 1-40

MSC:
Primary 06F15; Secondary 20E22

DOI:
https://doi.org/10.1090/S0002-9947-1986-0849464-7

MathSciNet review:
849464

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In an -group , this paper defines an -subgroup to be *above* an -subgroup (or to be *below* ) if for every integer , , and , . It is shown that for every -subgroup , there exists an -subgroup maximal below which is closed, convex, and, if the -group is normal-valued, unique, and that for every -subgroup there exists an -subgroup maximal above which is *saturated*: if and , then .

Given -groups and , it is shown that every lattice ordering of the splitting extension , which extends the lattice orders of and and makes lie above , is uniquely determined by a lattice homomorphism from the lattice of principal convex -subgroups of into the cardinal summands of . This extension is sufficiently general to encompass the cardinal sum of two -groups, the lex extension of an -group by an -group, and the permutation wreath product of two -groups.

Finally, a characterization is given of those abelian -groups that *split off below*: whenever is a convex -subgroup of an -group , is then a splitting extension of by for any -subgroup maximal above in .

**[1]**R. N. Ball,*Convergence and Cauchy structures on lattice ordered groups*, Trans. Amer. Math. Soc.**259**(1980), 357-392. MR**567085 (81m:06039)****[2]**-,*The generalized orthocompletion and strongly projectable hull of a lattice ordered group*, Canad. J. Math.**34**(1982), 621-661. MR**663307 (84e:06021)****[3]**-,*The structure of the*-*completion of a lattice ordered group*, Pacific J. Math. (submitted).**[4]**-,*Topological lattice ordered groups*, Pacific J. Math.**83**(1979), 1-26. MR**555035 (82h:06021)****[5]**A. Bigard,*Contribution à la théorie des groupes réticulés*, Thèse sci. math., Paris, 1969. MR**0250950 (40:4181)****[6]**A. Bigard, K. Keimel and S. Wolfenstein,*Groupes et anneaux réticulés*, Lecture Notes in Math., vol. 608, Springer-Verlag, Berlin and New York, 1977. MR**0552653 (58:27688)****[7]**J. W. Brewer, P. Conrad and P. Montgomery,*Lattice ordered groups and a conjecture for adequate domains*, Proc. Amer. Math. Soc.**43**(1974), 31-35. MR**0332616 (48:10942)****[8]**R. D. Byrd,*Lattice ordered groups*, Thesis, Tulane University, 1966.**[9]**P. Conrad,*Lattice ordered groups*, Lecture Notes, Tulane University, 1970.**[10]**-,*Lex subgroups of lattice ordered groups*, Czechoslovak Math. J.**18**(1968), 86-103. MR**0225697 (37:1290)****[11]**-,*The structure of an*-*group that is determined by its minimal prime subgroups*, Ordered Groups, Lecture Notes in Pure and Appl. Math., vol. 62, Dekker, New York, 1980.**[12]**P. Conrad, J. Harvey and C. Holland,*The Hahn embedding theorem for lattice ordered groups*, Trans. Amer. Math. Soc.**108**(1963), 143-169. MR**0151534 (27:1519)****[13]**A. Glass,*Ordered permutation groups*, London Math. Soc. Lecture Notes Series 55, Cambridge Univ. Press, London, 1981. MR**645351 (83j:06004)****[14]**S. McCleary,*Closed cls of a normal valued*-*group*...**[15]**E. Scrimger,*A large class of small varieties of lattice ordered groups*, Proc. Amer. Math. Soc.**51**(1975), 301-306. MR**0384644 (52:5517)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
06F15,
20E22

Retrieve articles in all journals with MSC: 06F15, 20E22

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0849464-7

Article copyright:
© Copyright 1986
American Mathematical Society