Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weighted nonlinear potential theory


Author: David R. Adams
Journal: Trans. Amer. Math. Soc. 297 (1986), 73-94
MSC: Primary 31B25; Secondary 26D10, 31C15, 46E35
DOI: https://doi.org/10.1090/S0002-9947-1986-0849468-4
MathSciNet review: 849468
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The potential theoretic idea of the "thinness of a set at a given point" is extended to the weighted nonlinear potential theoretic setting--the weights representing in general singularities/degeneracies--and conditions on these weights are given that guarantee when two such notions are equivalent at the given point. When applied to questions of boundary regularity for solutions to (degenerate) elliptic second-order partial differential equations in bounded domains, this result relates the boundary Wiener criterion for one operator to that of another, and in the linear case gives conditions for boundary regular points to be the same for various operators. The methods also yield two weight norm inequalities for Riesz potentials

$\displaystyle {\left( {\int {{{({I_\alpha }{\ast}f)}^q}v\,dx} } \right)^{1/q}} \leqslant {\left( {\int {{f^p}w\,dx} } \right)^{1/p}},$

$ 1 < p \leqslant q < \infty $, which at least in the first-order case $ (\alpha = 1)$ have found some use in a number of places in analysis.

References [Enhancements On Off] (What's this?)

  • [1] D. R. Adams, Traces of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa 25 (1971), 203-217. MR 0287301 (44:4508)
  • [2] -, A trace inequality for generalized potentials, Studia Math. 48 (1973), 99-105. MR 0336316 (49:1091)
  • [3] -, Traces of potentials. II, Indiana Univ. Math. J. 22 (1973), 907-918. MR 0313783 (47:2337)
  • [4] -, Lectures on $ {L^p}$-potential theory, Umeå Univ. Reports, No. 2, 1981.
  • [5] -, Capacity and the obstacle problem, Appl. Math. Optim. 8 (1981), 39-57. MR 646503 (83f:49016)
  • [6] -, Some weighted estimates for potentials, Abstracts Amer. Math. Soc. 5 (1984), 355.
  • [7] D. R. Adams and N. G. Meyers, Thinness and Wiener criteria for nonlinear potentials, Indiana Univ. Math. J. 22 (1972), 169-197. MR 0316724 (47:5272)
  • [8] -, Bessel potentials. Inclusion relations among classes of exceptional sets, Indiana Univ. Math. J. 22 (1973), 873-905. MR 0320346 (47:8885)
  • [9] P. Bauman, A Wiener test for nondivergence structure second-order elliptic equations, preprint. MR 808829 (87b:35047)
  • [10] M. Brelot, Sur les ensembles effilés, Bull. Sci. Math. 68 (1944), 12-36. MR 0012364 (7:15e)
  • [11] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930. MR 0117349 (22:8129)
  • [12] S. Y. A. Chang, J. M. Wilson and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, preprint. MR 800004 (87d:42027)
  • [13] S. Chanillo and R. Wheeden, $ {L^p}$ estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators, preprint.
  • [14] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. MR 0358205 (50:10670)
  • [15] R. Coifman and R. Rochberg, Another characterization of $ BMO$, Proc. Amer. Math. Soc. 79 (1980), 249-254. MR 565349 (81b:42067)
  • [16] E. Fabes, D. Jerison and C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 (1982), 151-182. MR 688024 (84g:35067)
  • [17] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), 129-206. MR 707957 (85f:35001)
  • [18] A. Gatto, C. Gutiérrez and R. Wheeden, Fractional integrals on weighted $ {H^p}$ spaces, Trans. Amer. Math. Soc. 289 (1985), 575-589. MR 784004 (86k:42037)
  • [19] K. Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), 77-102. MR 567435 (81j:31007)
  • [20] L. I. Hedberg and T. H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), 161-187. MR 727526 (85f:31015)
  • [21] -, Nonlinear potentials and approximation in the mean by analytic functions, Math. Z. 129 (1972), 299-319. MR 0328088 (48:6430)
  • [22] L. Hormander, $ {L^p}$ estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65-78. MR 0234002 (38:2323)
  • [23] S. V. Hruščev, A description of weights satisfying the $ {A_\infty }$ condition of Muckenhoupt, Proc. Amer. Math. Soc. 90 (1984), 253-257. MR 727244 (85k:42049)
  • [24] W. Maz'ja, Zur theorie Sobolewscher Räume, Teubner-Texte sur Math., Band 38, Leipzig, 1981. MR 705788 (84k:46029)
  • [25] W. Maz'ja and V. Havin, Nonlinear potential theory, Russian Math. Surveys 27 (1972), 71-148.
  • [26] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue spaces, Math. Scand. 26 (1970), 255-292. MR 0277741 (43:3474)
  • [27] -, Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166. MR 0367235 (51:3477)
  • [28] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [29] -, The equivalence of two conditions for weight functions, Studia Math. 49 (1974), 101-106. MR 0350297 (50:2790)
  • [30] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-274. MR 0340523 (49:5275)
  • [31] E. Sawyer, A characterization of a two weight norm inequality for maximal operators, Studia Math. 75 (1982), 1-11. MR 676801 (84i:42032)
  • [32] -, A two weight weak type inequality for fractional integrals, Trans. Amer. Math. Soc. 281 (1984), 339-345. MR 719674 (85j:26010)
  • [33] G. Stampacchia, Le probléme de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258. MR 0192177 (33:404)
  • [34] E. Stredulinsky, Weighted inequalities and degenerate elliptic partial differential equations, Lecture Notes in Math., vol. 1074, Springer-Verlag, Berlin and New York, 1984. MR 757718 (86f:35090)
  • [35] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483. MR 0216286 (35:7121)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31B25, 26D10, 31C15, 46E35

Retrieve articles in all journals with MSC: 31B25, 26D10, 31C15, 46E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0849468-4
Keywords: Capacity, thinness, two-weight embeddings, boundary regularity
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society