Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Isometries on $ L\sb {p,1}$


Authors: N. L. Carothers and B. Turett
Journal: Trans. Amer. Math. Soc. 297 (1986), 95-103
MSC: Primary 46E30; Secondary 46B20
DOI: https://doi.org/10.1090/S0002-9947-1986-0849469-6
MathSciNet review: 849469
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The extreme points of the sphere of the Lorentz function space $ {L_{p,1}}[0,1]$ are computed. As an application, the linear isometries from $ {L_{p,1}}$ into itself are completely described.


References [Enhancements On Off] (What's this?)

  • [1] Z. Altshuler, The modulus of convexity of Lorentz and Orlicz sequence spaces, Notes in Banach Spaces (H. E. Lacey, ed.), Univ. of Texas Press, 1980. MR 606225 (82e:46020)
  • [2] B. Bru and H. Heinich, Isometries positives et propriétés ergodiques de quelques espaces de Banach, Ann. Inst. H. Poincaré Sect. B 17 (1981), 377-405. MR 644353 (83f:47028)
  • [3] J. R. Calder and J. B. Hill, A collection of sequence spaces, Trans. Amer. Math. Soc. 152 (1970), 107-118. MR 0265913 (42:822)
  • [4] N. L. Carothers, Rearrangement invariant subspaces of Lorentz function spaces, Israel J. Math. 40 (1981), 217-228. MR 654578 (83h:46041)
  • [5] -, Rearrangement invariant subspaces of Lorentz function spaces. II, preprint.
  • [6] N. L. Carothers and P. H. Flinn, Embedding $ l_p^{{n^\alpha }}$ into $ l_{p,q}^n$, Proc. Amer. Math. Soc. 88 (1983), 523-526. MR 699425 (84h:46018)
  • [7] J. Creekmore, Type and cotype in Lorentz $ {L_{p,q}}$ spaces, Indag. Math. 43 (1981), 145-152. MR 707247 (84i:46032)
  • [8] M. M. Day, Normed linear spaces, Ergeb. Math. Grenzgeb., Bd. 21, Springer-Verlag, 1973. MR 0344849 (49:9588)
  • [9] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys, no. 15, Amer. Math. Soc., Providence, R. I., 1977. MR 0453964 (56:12216)
  • [10] I. Halperin, Function spaces, Canad. J. Math. 5 (1953), 273-288. MR 0056195 (15:38h)
  • [11] G. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, 1952. MR 0046395 (13:727e)
  • [12] E. Hewitt and K. Stromberg, Real and abstract analysis, Graduate Texts in Math. 25, Springer-Verlag, 1965. MR 0367121 (51:3363)
  • [13] R. A. Hunt, On $ L(p,q)$ spaces, Enseign. Math. 12 (1966), 249-274. MR 0223874 (36:6921)
  • [14] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. No. 217, 1979. MR 527010 (82j:46025)
  • [15] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Ergeb. Math. Grenzgeb., Bd. 97, Springer-Verlag, 1979. MR 540367 (81c:46001)
  • [16] G. G. Lorentz, Some new functional spaces, Ann. of Math. 51 (1950), 37-50. MR 0033449 (11:442d)
  • [17] R. O'Neil, Integral transforms and tensor products on Orlicz spaces and $ L(p,q)$ spaces, J. Analyse Math. 21 (1968), 1-276. MR 0626853 (58:30125)
  • [18] H. L. Royden, Real analysis, Macmillan, 1968. MR 0151555 (27:1540)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E30, 46B20

Retrieve articles in all journals with MSC: 46E30, 46B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0849469-6
Keywords: Linear isometries, Lorentz function spaces, extreme points
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society