COUNTABLE DIMENSIONAL UNIVERSAL SETS

ROMAN POL\(^1\)

ABSTRACT. The main results of this paper are a construction of a countable union of zero dimensional sets in the Hilbert cube whose complement does not contain any subset of finite dimension \(n > 1\) (Theorem 2.1, Corollary 2.3) and a construction of universal sets for the transfinite extension of the Menger-Urysohn inductive dimension (Theorem 2.2, Corollary 2.4).

1. Terminology and notation. All spaces considered in this paper are metrizable and separable. Our terminology follows Kuratowski [Ku] and Nagata [Na 2].

1.1. Notation. We denote by \(I\) the interval \([-1,1]\), \(I^\infty\) is the countable product of \(I\), i.e. the Hilbert cube, \(p_i: I^\infty \to I_i\) is the projection onto the \(i\)th coordinate, \(P\) is the set of the irrationals from \(I\) and \(\omega\) is the set of natural numbers. Given a point \(t \in I\), we let \(Q_i = \{(x_1, x_2, \ldots) \in I^\infty: x_i = t\}\).

1.2. Partitions. A partition in a space \(X\) between a pair of disjoint sets \(A\) and \(B\) is a closed set \(L\) such that \(X \setminus L = U \cup V\), where \(U\) and \(V\) are disjoint open sets with \(A \subset U\) and \(B \subset V\).

1.3. Countable dimensional spaces and the transfinite inductive dimension \(\text{ind}\). A space \(X\) is countable dimensional if it is a countable union \(X = \bigcup_{i=1}^{\infty} X_i\) of zero dimensional sets \(X_i\) [Hu].

The transfinite dimension \(\text{ind}\) is the extension by transfinite induction of the classical Menger-Urysohn inductive dimension: \(\text{ind} X = -1\) means \(X = \emptyset\), \(\text{ind} X < \alpha\) if and only if each point \(x\) in \(X\) can be separated in \(X\) from any closed set not containing \(x\) by a partition \(L\) with \(\text{ind} L < \alpha\), \(\alpha\) being an ordinal, we let \(\text{ind} X\) be the smallest ordinal \(\alpha\) with \(\text{ind} X \leq \alpha\) if such an ordinal exists, and we put \(\text{ind} X = \infty\) otherwise. If \(\text{ind} X \neq \infty\), then \(\text{ind} X\) is a countable ordinal, \(X\) having a countable base.

The transfinite dimension \(\text{ind}\) was first discussed by Hurewicz [Hu, §5], [H-W, p. 50] (although the idea goes back to Urysohn’s memoir [Ur, p. 66]). A comprehensive survey of the topic is given by Engelking [En 2].

Hurewicz [Hu, En 2, 4.1, 4.15] proved that for a complete space \(X\), \(\text{ind} X \neq \infty\) if and only if \(X\) is countable dimensional and that each space \(X\) with \(\text{ind} X \neq \infty\) has a countable dimensional compactification.

\(^1\)This paper was written while I was visiting Auburn University, Alabama. I would like to express my gratitude to the Department of Mathematics of Auburn University for its hospitality.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
1.4. Hereditarily infinite dimensional spaces. We say that an infinite dimensional space X is hereditarily infinite dimensional (hereditarily uncountable dimensional) if each nonempty subset of X is either zero dimensional or infinite dimensional (uncountable dimensional), cf. [G-S, Wa, Tu].

2. Introduction. The following two theorems are main results of this paper.

2.1. Theorem. There exists a countable dimensional set C in the Hilbert cube I^∞ such that for each countable dimensional subset A of I^∞ the difference $A \setminus C$ is at most zero dimensional.

2.2. Theorem. For each countable ordinal α there exists a G_δ-set E_α in I^∞ with transfinite inductive dimension $\text{ind } E_\alpha = \alpha$ such that for every G_δ-set G in I^∞ with $\text{ind } G \leq \alpha$ there is an irrational $t \in I$ for which $G \cap Q_t = E_\alpha \cap Q_t$, where $Q_t = \{(x_1, x_2, \ldots) \in I^\infty : x_1 = t\}$.

Since each separable metrizable space embeds in I^∞, Theorem 2.1 yields the following corollary.

2.3. Corollary. Each uncountable dimensional separable metrizable space contains a countable dimensional subset with hereditarily uncountable dimensional complement.

Each subset of I^∞ can be enlarged to a G_δ-set in I^∞ with the same transfinite dimension $\text{ind } [E_n 2, 5.5]$ and hence the sets E_α in Theorem 2.2 have the following property:

2.4. Corollary. For each countable ordinal α, every separable metrizable space X with $\text{ind } X \leq \alpha$ can be embedded homeomorphically into the space E_α.

Therefore, E_α is a universal space in the class of separable metrizable spaces with transfinite dimension $\text{ind } \leq \alpha$. The question about the existence of such universal spaces for $\alpha \geq \omega_0$ was asked by Engelking [En 2, Problem 5.11], cf. also Luxemburg [Lu 2, Problem 8.4].

Using the zero dimensional set E_0 described in Theorem 2.2 one obtains the following fact (cf. §4.2):

2.5. Corollary. There exists a countable dimensional $G_\delta\sigma$-set E_∞ in I^∞ such that for every countable dimensional $G_\delta\sigma$-set G in I^∞ there is an irrational $t \in I$ with $G \cap Q_t = E_\infty \cap Q_t$.

The results of this paper are based implicitly on a notion of "universal functions" for a given collection of sets and some related diagonal arguments; these ideas go back to the origins of descriptive set theory, cf. Moschovakis [Mo, Remark 15 on p. 63], Kuratowski [Ku, §30, XIII]. Certain "universal functions" for the collections of compacta in I^∞ with transfinite dimension $\text{ind } \leq \alpha$ have been considered in [Po 2, §4] and a significant part of the present paper is a modification and an extension of the methods from [Po 2, §4].

Theorem 2.1 can be proved by making use of the zero dimensional universal set E_0 described in Theorem 2.2 (cf. Remark 4.2.1). We give, however, an independent direct proof of this theorem (though based on the same ideas as the construction of
the sets \(E_\alpha \) in Theorem 2.2). This proof also provides a simple construction of sets with properties only slightly weaker than those of \(E_0, E_1, \ldots \) (for finite \(\alpha \)) and the set \(E_\infty \) in Corollary 2.5.

The paper is organized as follows.

In §3.1 we construct a "universal sequence" of sets for zero dimensional sets in \(\mathbb{I}^\infty \) and in §3.2 we intensify certain singular properties of these sets, following an idea from Walsh [Wa], to obtain the countable dimensional set \(C \) described in Theorem 2.1.

In §4.1 we construct "universal functions" \(M_\alpha \subset P \times \mathbb{I}^\infty \), in the product of the rationals and the Hilbert cube, for the collection of \(G_\delta \)-sets in \(\mathbb{I}^\infty \) with transfinite dimension \(\text{ind} \leq \alpha \) and in §4.2 we apply a standard diagonal construction to get from these \(M_\alpha \)'s the sets \(E_\alpha \) described in Theorem 2.2.

§5 is a slight departure from the main subject of this paper (and it is formally independent of the other sections). We define here, by a method similar to that in §3.1, a "universal sequence" of partitions between the opposite faces in \(\mathbb{I}^\infty \), and we use these partitions along a path outlined by Walsh [Wa, §§3 and 7] to obtain a rather unexpectedly simple construction of hereditarily infinite dimensional compacta.

In §6 we collect some comments related to the subject of this paper.

I would like to thank Henryk Toruńczyk for pointing out a direct argument used in the proofs of property (I) in §3.1 and Lemma 4.1.3(ii), which simplified my original proofs.

3. A countable union of 0-dimensional sets in \(\mathbb{I}^\infty \) whose complement has no subsets of dimension \(n \geq 1 \). In this section we give a proof of Theorem 2.1.

3.1. A universal sequence \(N_1, N_2, \ldots \) for 0-dimensional sets in \(\mathbb{I}^\infty \). Let \(F \) be an arbitrary set in \(\mathbb{I} \) homeomorphic to the irrationals \(P \), let \(\Gamma \) be the space of all homeomorphic embeddings \(h: \mathbb{I}^\infty \rightarrow \mathbb{I}^\infty \) of the Hilbert cube into itself endowed with the topology of uniform convergence and let

\[
u = (U_1, U_2, \ldots): F \rightarrow \Gamma \times \Gamma \times \cdots \]

be a continuous map of the set \(T \) onto the countable product of the completely metrizable separable space \(\Gamma \), cf. [Ku, §36, II].

For each \(i = 1, 2, \ldots \) we let

\[
(1) \quad N_i = \{(x_1, x_2, \ldots) \in I^\infty: x_1 \in T \text{ and } U_i(x_1)(x_1, x_2, \ldots) \in P \times P \times \cdots \}.
\]

We shall verify that the sets \(N_i \) have the following two properties, where for each \(t \in I \),

\[
Q_t = \{(x_1, x_2, \ldots) \in I^\infty: x_1 = t \}
\]

(cf. §4.2(I) and (II)):

(I) The sets \(N_i \) are zero dimensional.

(II) Given an arbitrary sequence \(G_1, G_2, \ldots \) of zero dimensional sets in \(I^\infty \) there exists \(t \in T \) such that \(G_i \cap Q_t \subset N_i \cap Q_t \) for each \(i = 1, 2, \ldots \).

Proof of (I). Let \(Q_T = \{(x_1, x_2, \ldots) \in I^\infty: x_1 \in T \} \) and let, for each \(i \in \omega \), a continuous map \(f_i: Q_T \rightarrow T \times I^\infty \) be defined by

\[
f_i(x_1, x_2, \ldots) = (x_1, U_i(x_1)(x_1, x_2, \ldots)).
\]
The map f_i is closed (the projection $Q_T \to T$ being parallel to a compact factor, see [Bo, Chapter I, §§10, 1 and 2]) and injective (the maps $u_i(t)$ being embeddings), and hence f_i embeds Q_T homeomorphically into the product $T \times I^\infty$. Property (I) follows now from the fact that f_i embeds N_i into the zero dimensional space $T \times (P \times P \times \cdots)$.

Proof of (II). We shall use the following universal property of the product of the irrationals $P \times P \times \cdots$ established by Nagata [Na 1, Na 2, VI.2.A] (a simple proof is given in §6.4):

3.1.1. **Lemma (Nagata).** For each zero dimensional set G in a metrizable separable space X there exists a homeomorphic embedding $h: X \to I^\infty$ such that $h(G) \subset P \times P \times \cdots$.

Let G_1, G_2, \ldots be an arbitrary sequence of zero dimensional sets in I^∞ and, for each $i \in \omega$, let $h_i: I^\infty \to I^\infty$ be an embedding such that

$$h_i(G_i) \subset P \times P \times \cdots.$$

Let us choose a $t \in T$ such that

$$u(t) = (u_1(t), u_2(t), \ldots) = (h_1, h_2, \ldots).$$

Then, for each $i \in \omega$, we have (see (2), (3), (1))

$$G_i \cap Q_i \subset \{(t, x_2, x_3, \ldots): h_i(t, x_2, x_3, \ldots) \in P \times P \times \cdots\} = \{(t, x_2, x_3, \ldots): u_i(t)(t, x_2, x_3, \ldots) \in P \times P \times \cdots\} = N_i \cap Q_i,$$

which proves property (II).

We close this section with an observation that property (II) yields, by a simple diagonal argument, the following property of the union

$$N_\infty = \bigcup_{i=1}^{\infty} N_i.$$

(III) **If A is a subset of I^∞ disjoint from N_∞ whose projection onto the first coordinate contains the set T, then A is uncountable dimensional.**

Assume on the contrary that $A = \bigcup_{i=1}^{\infty} G_i$, where the sets G_i are zero dimensional. By property (II) there exists a $t \in T$ such that $G_i \cap Q_t \subset N_i \cap Q_t$ for all $i \in \omega$ and hence $\emptyset \ne A \cap Q_t = \bigcup_{i=1}^{\infty} G_i \cap Q_t \subset N_\infty \cap Q_t$, contradicting the fact that A was disjoint from N_∞.

3.2. **Proof of Theorem 2.1.** Reasoning in this section follows some ideas of Walsh [Wa].

Let T_1, T_2, \ldots be a sequence of topological copies of the irrationals in I, with pairwise disjoint closures in I, such that each nondegenerate interval in I contains some T_i.

For each $i \in \omega$, the construction described in §3.1 with $T = T_i$ yields a countable dimensional set $N_\infty^{(i)}$ in I^∞ such that (see property (III)) each subset in I^∞ disjoint from $N_\infty^{(i)}$ whose projection onto the first coordinate contains T_i is uncountable.
dimensional. Therefore, the countable dimensional set
\[C' = N^{(1)}_\infty \cup N^{(2)}_\infty \cup \ldots \]
has the following property:

(IV) If A is a countable dimensional set in \(I^n \) disjoint from \(C' \) then the projection of A onto the first coordinate does not contain any nondegenerate interval in I, i.e. the projection is zero dimensional.

Let \(\pi_i: I^n \to I^\infty \) be the permutation of the coordinates interchanging the first coordinate with the \(i \)-th one and let \(C_i = \pi_i(C') \) for \(i \in \omega \). Each countable dimensional set \(C_i \) has then the property analogous to that of \(C' \) stated in (IV), where the first coordinate is replaced by the \(i \)-th one. The countable dimensional set \(C = C_1 \cup C_2 \cup \cdots \) satisfies the assertion of Theorem 2.1: if \(A \) is a nonempty countable dimensional set in \(I^n \) disjoint from \(C \) then, \(A \) being disjoint from each \(C_i \), for every \(i \in \omega \) the projection \(p_i(A) \) of \(A \) onto the \(i \)-th coordinate is zero dimensional and so is the set \(A \subset \prod_{i=1}^\infty p_i(A) \), cf. Walsh [Wa, §3].

4. Universal sets for the transfinite extension of the inductive Menger-Urysohn dimension. In this section we construct the sets \(E_\alpha \) described in Theorem 2.2 and we prove Corollary 2.5.

4.1. Universal functions \(M_\alpha \). Given a set \(S \) in the product \(P \times I^\infty \) of the irrationals \(P \) and the Hilbert cube \(I^\infty \), for each \(t \in P \), we let
\[S(t) = \{ x \in I^\infty : (t, x) \in S \} . \]

4.1.1. Proposition. For each countable ordinal \(\alpha \) there exists a \(G_\delta \)-set \(M_\alpha \) in \(P \times I^\infty \) such that
(i) \(\text{ind } M_\alpha = \alpha \),
(ii) for each \(G_\delta \)-set \(G \) in \(I^\infty \) with \(\text{ind } G \leq \alpha \) there is a \(t \in P \) with \(M_\alpha(t) = G \).

Proof. Let \(p_i: I^\infty \to I \) be the projection onto the \(i \)-th coordinate and let
\begin{align*}
C_i &= p_i^{-1}(-1), \quad D_i = p_i^{-1}(1), \quad H_i = p_i^{-1}(0),
\end{align*}
i.e. \(H_i \) is a partition between the pair \(C_i \) and \(D_i \) of the \(i \)-th opposite faces in \(I^\infty \). Let
\[Z = I^\infty \setminus \bigcup\{ C_{2i-1} \cup D_{2i-1} : i = 1, 2, \ldots \} . \]
We shall construct the sets \(M_\alpha \) by transfinite induction. Let \(M_{-1} = \emptyset \) and let us assume that for some ordinal \(\alpha \) the sets \(M_\beta \) with \(\beta < \alpha \) have been already constructed. We shall define the set \(M_\alpha \).

(I) Let us split the set of even natural numbers into disjoint infinite sets \(\Sigma_{-1}, \Sigma_0, \Sigma_1, \ldots, \Sigma_\beta, \ldots, \beta < \alpha \), and let \(\Gamma \) be the space of all homeomorphic embeddings \(h: I^\infty \to I^\infty \) satisfying the following two conditions
\begin{itemize}
\item[(*)] if \(x \in h^{-1}(Z) \) and \(F \) is a closed set in \(I^\infty \) not containing \(x \), then \(h(x) \in C_{2i} \) and \(h(F) \subset D_{2i} \) for some \(i \in \omega \);
\item[(**)] if \(j \in \Sigma_\beta \) then \(\text{ind } h^{-1}(Z \cap H_j) \leq \beta \).
\end{itemize}
We shall consider \(\Gamma \) with the topology of uniform convergence.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
4.1.2. Lemma. For each G_α-set G in I^∞ with $\text{ind } G \leq \alpha$ there exists an embedding $h \in \Gamma$ such that $G = h^{-1}(Z)$.

Proof. Let \mathcal{B} be a countable base in I^∞. Let us consider the collection of all pairs (A, B) of disjoint closed sets in I^∞, each of which being a finite sum of the closures of the elements of \mathcal{B} such that there exists a partition L in I^∞ between A and B with $\text{ind}(L \cap G) = \gamma < \alpha$, let $\gamma(A, B)$ be the minimal such ordinal γ for the pair (A, B), and finally, let us arrange this collection of pairs into a sequence $(A_1, B_1), (A_2, B_2), \ldots$, letting $\gamma(i) = \gamma(A_i, B_i)$. Choose an injection $\tau: \omega \to \omega$ such that $\tau(i) \in \Sigma_{\gamma(i)}$ and let $f_i: I^\infty \to I$ be continuous maps with

$$f_i^{-1}(-1) = A_i, \quad f_i^{-1}(1) = B_i,$$

$$\text{ind}(G \cap f_i^{-1}(0)) = \gamma(i).$$

Let $I^\infty \setminus G = X_1 \cup X_2 \cup \cdots$, where X_i are compact sets and let $g_i: I^\infty \to [0, 1]$ be continuous maps with $g_i^{-1}(1) = X_i$. Let us finally split the odd natural numbers into two disjoint infinite sets Σ' and Σ'' and let us choose bijections $\nu: \Sigma' \to \omega$ and $\mu: \Sigma'' \to \omega$.

An embedding $h: I^\infty \to I^\infty$ with required properties can be defined now by $h(x_1, x_2, \ldots) = (y_1, y_2, \ldots)$ where

$$y_j = \begin{cases} g_{\nu(j)}(x_1, x_2, \ldots), & \text{if } j \in \Sigma', \\ \frac{1}{2} x_{\mu(j)}, & \text{if } j \in \Sigma'', \\ f_i(x_1, x_2, \ldots), & \text{if } j = \tau(i), \\ 1 & \text{if } j \notin \Sigma' \cup \Sigma'' \cup \tau(\omega). \end{cases}$$

The first two formulas in (6) guarantee that h is an embedding and $G = h^{-1}(Z)$. Given an $x \in G$ and a closed set F in I^∞ not containing x, the assumption $\text{ind } G \leq \alpha$ yields the existence of a pair (A_i, B_i) such that $x \in A_i$ and $F \subset B_i$ (cf. [En 1, Lemma 1.2.9]). Then (see (2), (4), (5) and (6)), $x \in h^{-1}(C_{\tau(i)})$, $F \subset h^{-1}(D_{\tau(i)})$ and $\text{ind } h^{-1}(Z \cap H_{\tau(i)}) = \text{ind}(G \cap f_i^{-1}(0)) = \gamma(i)$. Therefore h satisfies condition (*) and condition (***) holds for all $j \in \tau(\omega)$ (recall that $\tau(i) \in \Sigma_{\gamma(i)}$). But if $j \in \text{an even number not belonging to } \tau(\omega)$, the last formula in (6) shows that $h(I^\infty) \cap H_j = \emptyset$ and so (***) is satisfied also in that case.

(II) For each even number $2i$ let $\beta(i)$ be the ordinal such that $2i \in \Sigma_{\beta(i)}$ (see (I)). Let us consider an embedding $h \in \Gamma$, where Γ is the space defined in (I). For every even number $2i$ property (***) and universality of the set $M_{\beta(i)}$ yield the existence of an irrational $t_i \in P$ such that

$$h^{-1}(Z \cap H_{2i}) = M_{\beta(i)}(t_i).$$

Let $\Lambda \subset \Gamma \times P \times P \times \ldots$ be the space of all sequences (h, t_1, t_2, \ldots) such that for each $i \in \omega$ the pair (h, t_i) satisfies condition (7). The space Λ being metrizable and separable, there exists a subset S of the irrationals in I and a continuous map $u = (u_0, u_1, u_2, \ldots): S \to \Lambda$ onto Λ (cf. [Ku, §36, III]). Let us define a continuous map $k: S \times I^\infty \to I^\infty$ by $k(s, x) = u_0(s)(x)$ and let

$$M = \{(s, x) \in S \times I^\infty: u_0(s)(x) \in Z\} = k^{-1}(Z),$$

$$L_i = \{(s, x) \in S \times I^\infty: u_0(s)(x) \in H_{2i}\} = k^{-1}(H_{2i}).$$
4.1.3. **Lemma.** The set M and the sets L_i have the following properties:

(i) for each G_δ-set G in I^∞ with $\text{ind} G \leq \alpha$ there exists an $s \in S$ such that $M(s) = G$,

(ii) $\text{ind}(L_i \cap M) \leq \beta(i)$, $i \in \omega$,

(iii) $\text{ind} M = \alpha$.

Proof. (i) Let G be a G_δ-set in I^∞ with $\text{ind} G \leq \alpha$. By Lemma 4.1.2 there exists an embedding $h \in \Gamma$ such that $G = h^{-1}(Z)$ and since $\alpha_0(S) = \Gamma$, $h = \alpha_0(s)$ for some $s \in S$. Then (see (8)) $M(s) = \alpha_0(s)^{-1}(Z) = G$.

(ii) By (7), for each $s \in S$ and $i \in \omega$, we have

$$u_0(s)^{-1}(Z \cap H_{2i}) = M_{\beta(i)}(u_i(s)),$$

i.e. (see (8) and (9))

$$M \cap L_i)(s) = M_{\beta(i)}(u_i(s)).$$

(10)

For each $i \in \omega$ define a continuous map $g_i: S \times I^\infty \to S \times P \times I^\infty$ by

$$g_i(s, x) = (s, u_i(s), x).$$

The map g_i homeomorphically embeds the set $M \cap L_i$ into the product $S \times M_{\beta(i)}$ (see (10)) and therefore $\text{ind}(M \cap L_i) \leq \text{ind} M_{\beta(i)} = \beta(i)$, the space S being zero dimensional.

(iii) Let $(s, x) \in M$ and let F be a closed set in $S \times I^\infty$ not containing (s, x). Since $u_0(s) \in \Gamma$, property (\ast) in (I) and (8) yield the existence of an $i \in \omega$ such that $u_0(s)(x) \in C_{2i}$ and $u_0(s)(F(s)) \subseteq D_{2i}$. Therefore the set L_i separates in $S \times I^\infty$ the point (s, x) from the closed set $F \cap (\{s\} \times I^\infty)$ (see (9)). The projection $S \times I^\infty \to S$ parallel to the compact factor being closed, there exists an open and closed neighborhood W of s in S such that $L_i \cap (W \times I^\infty)$ is a partition in $S \times I^\infty$ between the point (s, x) and the set F. Since, by (ii), $\text{ind}(M \cap L_i) < \alpha$, this shows that $\text{ind} M \leq \alpha$ and it completes the proof, as $\text{ind} M \geq \alpha$, by (i).

(III) It remains to modify slightly the set M constructed in (II) to obtain a G_δ-set in $P \times I^\infty$ satisfying conditions (i) and (ii) in Lemma 4.1.3.

By (8), M is a G_δ-set in $S \times I^\infty \subseteq P \times I^\infty$ and therefore there exists a G_δ-set M^* in $P \times I^\infty$ such that $\text{ind} M^* = \text{ind} M$ and $M^* \cap (S \times I^\infty) = M$, cf. [En 2, 5.5]. Let S^* be the projection of the set M^* onto the P-coordinate, let $w: P \to S^*$ be a continuous map onto S^*, cf. [Ku, §37, I], and let

$$M_\alpha = \{(t, x) \in P \times I^\infty: (w(t), x) \in M^*\}.$$

The set M_α is a G_δ-set in $P \times I^\infty$ (being the preimage of the set M^* under the map $(t, x) \to (w(t), x)$) and for each G_δ-set G in I^∞ with $\text{ind} G \leq \alpha$, there exists an irrational $t \in P$ with $M_\alpha(t) = G$ (as $G = M(s)$ for some $s \in S$ and $s = w(t)$ for some $t \in P$). Finally, $\text{ind} M_\alpha \leq \alpha$, since the map $(t, x) \to (t, w(t), x)$ embeds homeomorphically the set M_α into the product $P \times M^*$ (cf. the proof of Lemma 4.1.3(ii)).

This completes the inductive proof of Proposition 4.1.1.
4.2. Diagonal constructions related to the universal functions M_α. For each countable ordinal α, let $M_\alpha \subset P \times I^\infty$ be the universal function constructed in §4.1 and let

$$E_\alpha = \{(x_1, x_2, \ldots) \in I^\infty: (x_1, (x_1, x_2, \ldots)) \in M_\alpha\}.$$
(11)

Given a point $t \in I$, we put

$$Q_t = \{(x_1, x_2, \ldots) \in I^\infty: x_1 = t\}.$$

Let G be an arbitrary G_δ-set in I^∞ with $\text{ind } G \leq \alpha$. By Proposition 4.1.1, there exists an irrational $t \in P$ such that $M_\alpha(t) = G$ and hence

$$E_\alpha \cap Q_t = \{(x_1, x_2, \ldots): x_1 = t \text{ and } (x_1, (x_1, x_2, \ldots)) \in M_\alpha\} \cap \{(x_1, x_2, \ldots): x_1 = t \text{ and } (x_1, x_2, \ldots) \in G\}$$

Moreover, Proposition 4.1.1 shows also that E_α is a G_δ-set in I^∞ with $\text{ind } E_\alpha = \alpha$. Therefore the sets E_α satisfy the assertions of Theorem 2.2.

Let us construct now the set E_∞ described in Corollary 2.5.

Let $u = (u_1, u_2, \ldots): P \to P \times P \times \cdots$ be a continuous map of the irrationals onto its countable product and let

$$N_i^* = \{(x_1, x_2, \ldots) \in I^\infty: x_1 \in P \text{ and } (u_i(x_1), (x_1, x_2, \ldots)) \in M_0\},$$
(12)

where $M_0 \subset P \times I^\infty$ is the universal function for zero dimensional sets in I^∞. Let us verify that the sets N_i^* have the following two properties (cf. §3.1(I) and (II)):

(I) Each N_i^* is a zero dimensional G_δ-set in I^∞.

(II) Given an arbitrary sequence G_1, G_2, \ldots of zero dimensional G_δ-sets in I^∞ there exists an irrational $t \in P$ such that $G_i \cap Q_t = N_i^* \cap Q_t$ for each $i = 1, 2, \ldots$.

Property (I) follows from the fact that the map $(x_1, x_2, \ldots) \to (x_1, u_i(x_1), (x_1, x_2, \ldots))$ homeomorphically embeds the set N_i^* into the product $P \times M_0$.

Let G_1, G_2, \ldots be a sequence of zero dimensional G_δ-sets in I^∞, let t_1, t_2, \ldots be irrationals such that $M_0(t_i) = G_i$, for $i = 1, 2, \ldots$ and let t be an irrational such that $u(t) = (u_1(t), u_2(t), \ldots) = (t_1, t_2, \ldots)$. Then, for each $i \in \omega$, we obtain (see 12)

$$G_i \cap Q_t = \{(x_1, x_2, \ldots): x_1 = t \text{ and } (t_i, (x_1, x_2, \ldots)) \in M_0\} \cap \{(x_1, x_2, \ldots): x_1 = t \text{ and } (u_i(t), (x_1, x_2, \ldots)) \in M_0\}$$

Let us put now (cf. §3.1(4))

$$E_\infty = \bigcup_{i=1}^{\infty} N_i^*$$
(13)

and let us verify that the countable dimensional $G_\delta \alpha$-set E_∞ satisfies the assertions of Corollary 2.5. Let G be an arbitrary countable dimensional $G_\delta \alpha$-set in I^∞; one can find zero dimensional G_δ sets G_1, G_2, \ldots in I^∞ such that $G = G_1 \cup G_2 \cup \cdots$. By property (II) there exists an irrational $t \in P$ such that $G_i \cap Q_t = N_i^* \cap Q_t$ for each $i \in \omega$, and therefore $G \cap Q_t = E_\infty \cap Q_t$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
4.2.1. Remark. The sequence N_1^*, N_2^*, \ldots has properties slightly stronger than those of the sequence N_1, N_2, \ldots described in §3.1 and therefore one can obtain the results in §3 using the sets N_i^* instead of N_i. Let us notice that in the case of the universal set M_0, used to define the sets N_i^*, the construction given in §4.1 simplifies essentially: the sets Σ_β in (I) do not appear and "ind $< \alpha$" means just "empty". Still, however, the proof of Theorem 2.1 given in §3 seems more direct than an alternative one based on the construction of the space M_0. Let us observe finally that if N is a zero dimensional G_δ-set in I^∞ containing the set N_1 defined in §3.1, $G \subset P \times I^\infty$ is a G_δ-set universal for G_δ-sets in I^∞ [Ku, §30, XIII], and $w = (w_1, w_2)$ maps continuously P onto $P \times P$, then the set

$$M = \{(t, x_1, x_2, \ldots) \in P \times I^\infty : (w_1(t), w_2(t), x_1, x_2, \ldots) \in (P \times N) \cap G\}$$

is a G_δ-set in $S \times I^\infty$, S being the projection of M onto P-coordinate, and each zero dimensional G_δ-set in I^∞ is of the form $M(t)$ for some $t \in S$, cf. Jayne and Rogers [J-R, proof of Theorem 9.1], and therefore the space M_0 can be easily obtained from M by the method described in §4.1(III).

5. A universal sequence of partitions between the opposite faces in I^∞. In this section we show that the method of parametrizing function spaces applied in §3.1 (cf. also the proof of Proposition 4.1.1(ii)) can be used to define a sequence of partitions between the opposite faces in I^∞ with some "universal" properties. This, combined with ideas of Walsh [Wa] and Rubin [Ru1] provides a quite simple construction of hereditarily strongly infinite dimensional compacta.

Recall that $p_i : I^\infty \to I$ is the projection onto the ith coordinate and let

$$C_i = p_i^{-1}(-1), \quad D_i = p_i^{-1}(1), \quad H_i = p_i^{-1}(0),$$

i.e. C_i and D_i is the pair of the ith opposite faces in I^∞ and H_i is a partition between them.

Let $0 < a_i < 1$ and let

$$C_i^* = p_i^{-1}[-1, -a_i], \quad D_i^* = p_i^{-1}[a_i, 1].$$

Finally, let T be any subset of I homeomorphic to the irrationals and, for each $t \in I$, let

$$Q_t = \{(x_1, x_2, \ldots) \in I^\infty : x_1 = t\}.$$

A space X is strongly infinite dimensional if there exists an infinite sequence $(A_1, B_1), (A_2, B_2), \ldots$ of pairs of disjoint closed sets in X such that if S_i is a partition between A_i and B_i in X ($i \in \omega$), then $\cap_{i=1}^\infty S_i = \emptyset$; strongly infinite dimensional spaces are uncountable dimensional, cf. [Na2, Chapter VI].

5.1. Proposition. There exist partitions L_i between the ith opposite faces C_i and D_i in I^∞ ($i \in \omega$), such that for every sequence of partitions S_i between the enlarged opposite faces C_i^* and D_i^* in I^∞ ($i \in \omega$), there exists a $t \in T$ such that $L_i \cap Q_t = S_i \cap Q_t$ for each $i = 1, 2, \ldots$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof. Let Λ be the space of all continuous maps $f : I^\infty \to I^\infty$ such that

1. $f(C_i^*) \subset C_i$ and $f(D_i^*) \subset D_i$,

Λ being endowed with the topology of uniform convergence, and let $u : T \to \Lambda$ be a continuous map onto the completely metrizable separable space Λ, cf. [Ku, §36, II].

Let $Q_T = \{(x_1, x_2, \ldots) \in I^\infty : x_1 \in T\}$ and let $F : Q_T \to I^\infty$ be a continuous map defined by (cf. §3.1(1))

2. $F(x_1, x_2, \ldots) = u(x_1)(x_1, x_2, \ldots)$.

By (1), the set $F^{-1}(H_i)$ is a partition in Q_T between $C_i^* \cap Q_T$ and $D_i^* \cap Q_T$ and since C_i and D_i are in the interior of C_i^* and D_i^* respectively, there exists a partition L_i in I^∞ between C_i and D_i extending $F^{-1}(H_i)$, cf. Engelking [En 2, Lemma 1.2.9], i.e.

3. $L_i \cap Q_T = F^{-1}(H_i)$, $i = 1, 2, \ldots$.

We shall verify that the sequence L_1, L_2, \ldots has the required property. Given partitions S_i in I^∞ between C_i^* and D_i^* ($i \in \omega$), let $f_i : I^\infty \to I$ be continuous functions such that $C_i^* = f_i^{-1}(-1)$, $D_i^* = f_i^{-1}(1)$ and $S_i = f_i^{-1}(0)$. The diagonal map $f = (f_1, f_2, \ldots) : I^\infty \to I^\infty$ belongs to Λ and therefore $f = u(t)$ for some $t \in T$.

Since $S_i = f^{-1}(H_i)$, for $i \in \omega$, we obtain (see (3) and (2))

$$L_i \cap Q_T = F^{-1}(H_i) \cap Q_T = u(t)^{-1}(H_i) \cap Q_T = f^{-1}(H_i) \cap Q_T = S_i \cap Q_T.$$

5.2. Corollary. Let L_1, L_2, \ldots be the sequence of partitions between the opposite faces in I^∞ described in Proposition 5.1. For each $\sigma \subset \omega \setminus \{1\}$ and for each set $M \subset \bigcap\{L_i : i \in \sigma\}$ whose projection onto the first coordinate contains T, we have

(i) if σ is a k-element set, then M is at least k-dimensional;

(ii) if σ is infinite, then M is strongly infinite dimensional.

Proof. The reasoning in both cases is the same. Assume that the assertion is not true. Then (using again a simple lemma on extension of partitions [En 2, Lemma 1.2.9]) one can find partitions S_i between C_i and D_i in I^∞, where $i \in \sigma$, such that $M \cap \bigcap\{S_i : i \in \sigma\} = \emptyset$, cf. [Ku, §27, II; R-S-W, §3]. But, on the other hand, there exists a $t \in T$ such that $S_i \cap Q_t = L_i \cap Q_t$ for each i, and this would yield a contradiction, $\emptyset \neq M \cap Q_t \subset M \cap \bigcap\{S_i : i \in \sigma\} = \emptyset$.

5.3. Hereditarily strongly infinite dimensional compacta. We shall repeat in this section some arguments due to Walsh [Wa, §§3, 7] and Rubin [Ru 1, §6] to derive from Corollary 5.2 a construction of hereditarily strongly infinite dimensional spaces.

Choose in I a collection T_1, T_2, \ldots of homeomorphic copies of the irrationals such that each nondegenerate interval in I contains some T_i and let $\sigma_{ik} \subset \omega \setminus \{1, i\}$, where $i, k = 1, 2, \ldots$, be pairwise disjoint infinite sets.

Let us fix a pair of natural numbers i, k. Changing the ith coordinate with the first one and letting $T = T_k$, we obtain from Corollary 5.2 partitions L_i between the jth opposite faces in I^∞, where $j \in \sigma_{ik}$, such that each subset of the intersection $L_{ik} = \bigcap\{L_j : i \in \sigma_{ik}\}$ whose projection onto the ith coordinate contains T_k is...
strongly infinite dimensional. Since $1 \notin \bigcup_{i,k} \sigma_{ik}$, each partition in I^∞ between the opposite faces C_1 and D_1 hits the intersection $L = \bigcap \{ L_j : j \in \bigcup_{i,k} \sigma_{ik} \} = \bigcap_{i,k} L_{ik}$, cf. [Ku, §28, IV], and therefore L is a compactum of positive dimension. If M is a nonempty set in L, then either for some i and k, $T_k \subset p_i(M)$ and then M is strongly infinite dimensional, or else no projection $p_i(M)$ contains a nondegenerate interval, and then M is zero dimensional, being a subset of the product $\prod_{i=1}^\infty p_i(M)$ of zero dimensional sets.

5.4. Remark. For other constructions of hereditarily infinite dimensional compacta we refer the reader to the papers by Walsh [Wa], Rubin [Ru 1, Ru 3] and Krasinkiewicz [Kr]; an illuminating account of the topic is given by Garity and Schori [G-S, §2], cf. also Nagata [Na 2, p. 125].

Separators of certain special type between the opposite faces in I^∞ with properties similar to (i) and (ii) in Corollary 5.2 were constructed by Walsh [Wa, §4], cf. also [R-S-W and S-W]. A sequence of partitions between the opposite faces in I^∞ satisfying condition (ii) in Corollary 5.2 was constructed by Rubin [Ru 1] (a simplified, but still rather involved, exposition of this construction was given in [Ru 3]). Rubin [Ru 2] has shown that the existence of such partitions yields a result that each strongly infinite dimensional space contains a closed hereditarily strongly infinite dimensional subspace.

An important element in the constructions in [R-S-W, Wa, Ru 1 and Kr] is a continuous parametrization of some collections of compacta and forming a "diagonal compactum" for that collection, and this element is also hidden in the proof of Proposition 5.1. This idea can be traced back to Mazurkiewicz [Ma] and Knaster [Kn], cf. Lelek [Le, Example, p. 80].

6. Comments.

6.1. Tumarkin's property. The following property of separable metrizable spaces X was considered by Tumarkin [Tu, Na, p. 125]:

(T) each infinite dimensional subspace of X contains subsets of arbitrarily large finite dimension.

Corollary 2.5. and the fact that the spaces X with $\text{ind } X \neq \infty$ have property (T) yield the following fact.

6.1.1. Proposition. Property (T) implies countable dimensionality, and in the class of completely metrizable separable spaces countable dimensionality is equivalent to property (T).

It is an open problem whether there exists a countable dimensional space which fails property (T), cf. [Tu, Wa, §7, En 2, 4.14]. In connection with this problem, let us make the following remark. One can repeat the construction in §3, starting with a continuous mapping $u = (u_1, u_2): T \to \Gamma \times \Gamma$ onto the square of Γ instead of its countable product. This yields zero dimensional sets N_1, N_2 (see 3.1(1)), a one dimensional set $E = N_1 \cup N_2$ (cf. 3.1(4)), and finally, it provides a one dimensional set D' in I^∞ defined analogously to the set C' described in §3.2. The set D' has the property that each one dimensional set $S \subset I^\infty \setminus D'$ has zero dimensional projection.
onto the first coordinate (cf. §3.2 (IV)). Therefore, if we let $D = \pi_1(D') \cup \pi_2(D') \cup \cdots$, where $\pi_i: \mathbb{I}^\infty \to \mathbb{I}^\infty$ is the permutation of the coordinates changing the ith one with the first one, we obtain a countable dimensional set D intersecting each one dimensional set in \mathbb{I}^∞ (see the reasoning at the end of §3.2) and hence, the complement $\mathbb{I}^\infty \setminus D$ does not contain any subset of positive finite dimension (as any such set contains a one-dimensional subset). It is still conceivable that there exists an infinite dimensional countable dimensional set S in $\mathbb{I}^\infty \setminus D$ (any such S would provide a solution to the problem we have formulated), however, the nature of the construction of D makes it difficult to clarify what are exactly the properties of this set.

Let us also mention that there exist uncountable dimensional compacta all of whose closed infinite dimensional subspaces contain closed subsets of arbitrarily large finite dimension—such a compactum is defined in [Po 1].

6.2. Totally disconnected complete spaces D_α with $\text{ind } D_\alpha = \alpha$. We shall use the spaces E_α defined in Theorem 2.2 to obtain spaces D_α described in the title of this section. Various constructions of totally disconnected complete spaces of arbitrarily large finite dimension can be found in [Ma, Le, p. 80; R-S-W, Kr].

Let $\alpha = \beta + 1$ be a non-limit-countable ordinal and let E_β be the universal set described in Theorem 2.2. Let $p: \mathbb{P} \times I^\infty \to \mathbb{P}$ be the projection. The universal properties of E_β yield immediately that G_β intersects each set S in $\mathbb{P} \times I^\infty$ with $\text{ind } S \leq \beta$ and $p(S) = \mathbb{P}$. Let $K_\alpha \subset I^\infty$ be a compactum with $\text{ind } K_\alpha = \alpha$, cf. [En 2, 2.2; Na 2, p. 148]. The set $\mathbb{P} \times K_\alpha \setminus G_\beta = F_\beta$ is an F_β-set in $\mathbb{P} \times K_\alpha$ and, since $\text{ind } G_\beta = \beta < \text{ind } K_\alpha = \alpha$, each vertical section $F_\alpha \cap p^{-1}(t)$ is nonempty. Therefore, there exists a function $f: \mathbb{P} \to K_\alpha$ of the first Baire class whose graph D_α is contained in F_α, see [Ku, §43, IX]. The set D_α is a totally disconnected G_β-set in $\mathbb{P} \times K_\alpha$. Moreover, D_α is disjoint from G_β and $p(D_\alpha) = \mathbb{P}$, so $\beta < \text{ind } D_\alpha \leq \text{ind } (\mathbb{P} \times K_\alpha) = \beta + 1 = \alpha$.

If α is a limit ordinal it is enough to let D_α be the free union of the sets $D_{\beta+1}$ with $\beta < \alpha$.

6.3. Compactifications of spaces with $\text{ind } = \alpha$. Let M_α be the universal space described in Proposition 4.1. By the theorem of Hurewicz quoted at the end of §1.3, there exists a countable dimensional compact extension M_α^* of M_α and let $\phi(\alpha)$ be the minimal transfinite dimension of such extensions. The function ϕ augmented by $\phi(\infty) = \infty$ has the following property:

For each separable metrizable space X there exists a compactification X^* of X such that $\text{ind } X \leq \text{ind } X^* \leq \phi(\text{ind } X)$.

Luxemburg [Lu 1] constructed examples which show that for any limit ordinal α, $\phi(\alpha) > \alpha$. The exact nature of the function ϕ is, however, unknown, see [Lu 1, Conjecture on p. 443, En 2, 5.10].

6.4. A proof of Nagata's Lemma 3.1.1. We shall give a simple proof of Lemma 3.1.1. By a standard diagonal embedding argument it is enough to show that given a zero dimensional set G in X and a pair of disjoint closed sets A and B in X, there is
a continuous map \(f: X \to J \) into the interval \(J = [-1/ \sqrt{2}, 1/ \sqrt{2}] \) such that \(A \subset f^{-1}(-1/ \sqrt{2}) \), \(B \subset f^{-1}(1/ \sqrt{2}) \) and \(f(G) \subset P \), \(P \) being the irrationals.

Nagata [Na 1, Na 2, VI.2.A] constructed such a map \(f \) by a modification of a standard proof of Urysohn’s Lemma. We shall construct this map by a simple approximation procedure.

Arrange all rational numbers from \(T \) into a sequence \(r_1, r_2, \ldots \) (without repetitions) and let \(\delta_i = \min\{|r_j - r_i|, |r_j \pm 1/ \sqrt{2}|: k < j \leq i\}, \quad \epsilon_i = 2^{-(i+3)} \cdot \delta_i, \quad a_i = r_i - \epsilon_i, \quad b_i = r_i + \epsilon_i, \quad A_i = [-1/ \sqrt{2}, a_i], \quad B_i = [b_i, 1/ \sqrt{2}], \quad J_i = (a_i, b_i). \)

Let us define continuous maps \(f_i: X \to J, \; i = 0, 1, 2, \ldots \), inductively as follows: let \(f_0 \) be such that \(A \subset f_0^{-1}(-1/ \sqrt{2}), \; B \subset f_0^{-1}(1/ \sqrt{2}) \), assume that the map \(f_i \) has been already defined and put \(C = f_i^{-1}(A_{i+1}), \; D = f_i^{-1}(B_{i+1}) \). Choose an open set \(U \) in \(X \) such that \(C \subset f_i^{-1}(-1/ \sqrt{2}), \; D \subset f_i^{-1}(1/ \sqrt{2}) \), \(f_i(\Omega) \subset P \), \(\Omega \) being the irrationals.

In general, for every rational number \(r \), from \(f_i \), \(f_i^{-1}(r) \subset P \) if \(r \) is transcendental, and \(f_i^{-1}(r) = \emptyset \) if \(r \) is algebraic. Since the sequence \(\{f_i\}_{i=0}^{\infty} \) converges uniformly to a continuous map \(f: X \to J \). Since all \(f_i \) coincide with \(f_0 \) on \(A \cup B \), \(A \subset f^{-1}(-1/ \sqrt{2}) \) and \(B \subset f^{-1}(1/ \sqrt{2}) \) and it is routine to check that for every rational number \(r_i \) from \(J \), \(f^{-1}(r_i) \cap G = \emptyset \), i.e. \(f(G) \subset P \).

REFERENCES

[Wa] J. J. Walsh, Infinite dimensional compacta containing no n-dimensional \((n \geq 1) \) subsets, Topology 18 (1979), 91–95.

DEPARTMENT OF MATHEMATICS, WARSAW UNIVERSITY, PKiN, IX p., 00 - 901 Warszawa, POLAND