Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Radon transform on $ {\rm SL}(2,{\bf R})/{\rm SO}(2,{\bf R})$


Authors: D. I. Wallace and Ryuji Yamaguchi
Journal: Trans. Amer. Math. Soc. 297 (1986), 305-318
MSC: Primary 22E30; Secondary 44A15, 53C65
DOI: https://doi.org/10.1090/S0002-9947-1986-0849481-7
MathSciNet review: 849481
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be $ SL(2,{\mathbf{R}})$. $ G$ acts on the upper half-plane $ \mathcal{H}$ by the Möbius transformation, providing $ \mathcal{H}$ with the Riemannian metric structure along with the Laplacian, $ \Delta $. We study the integral transform along each geodesic. $ G$ acts on $ \mathcal{P}$, the space of all geodesics, in a natural way, providing $ \mathcal{P}$ with its invariant measure and its own Laplacian. ( $ \mathcal{P}$ actually is a coset space of $ G$.) Therefore the above transform can be viewed as a map from a suitable function space on $ \mathcal{H}$ to a suitable function space on $ \mathcal{P}$. We prove a number of properties of this transform, including the intertwining properties with its Laplacians and its relation to the Fourier transforms.


References [Enhancements On Off] (What's this?)

  • [1] L. Ehrenpreis, The Radon transform on $ SL(2,{\mathbf{R}})$ (to appear).
  • [2] I. M. Gel'fand, S. G. Gindikin and Z. Ya. Shapiro, A local problem of integral geometry in a space of curves, Functional Anal. Appl. 13 (1979), 11-31. MR 541635 (80k:53100)
  • [3] S. Helgason, Duality and Radon transform for symmetric spaces, Amer. J. Math. 85 (1963), 667-692. MR 0158409 (28:1632)
  • [4] -, A duality in integral geometry; some generalizations of the Radon transform, Bull. Amer. Math. Soc. 70 (1964), 435-446. MR 0166795 (29:4068)
  • [5] -, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153-180. MR 0172311 (30:2530)
  • [6] -, A duality for symmetric spaces with applications to group representations, Adv. in Math. 5 (1970), 1-154. MR 0263988 (41:8587)
  • [7] -, The surjectivity of invariant differential operators on symmetric spaces. I, Ann. of Math. (2) 98 (1973), 451-479. MR 0367562 (51:3804)
  • [8] -, Support of Radon transforms, Adv. in Math. 38 (1980), 91-100. MR 594995 (82b:53068)
  • [9] -, The Radon transform, Birkhäuser, Boston, Mass., 1980.
  • [10] -, Topics in harmonic analysis on homogeneous spaces, Birkhäuser, Boston, Mass., 1981.
  • [11] P. D. Lax and R. S. Phillips, Translation representations for the solution of the non-Euclidean wave equation, Comm. Pure Appl. Math. 32 (1979), 617-667. MR 533296 (81a:43013)
  • [12] J. Peters, Analytical multipliers of the Radon transform, Proc. Amer. Math. Soc. 72 (1978), 485-491. MR 509239 (80a:44004)
  • [13] J. Radon, Über die Bestimmung von Funktionen ihre Integral Werte Langs Gewisser Mannigfaltigkeiten, Berk. Verh. Sachs. Akad. Wiss. Leipzig, Math.-Nat. 69 (1917), 262-277.
  • [14] K. T. Smith, D. C. Solmon and S. L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), 1227-1270. MR 0490032 (58:9394a)
  • [15] D. C. Solmon, The X-ray transform, J. Math. Anal. Appl. 56 (1976), 61-83. MR 0481961 (58:2051)
  • [16] -, A note on $ k$-plane integral transforms, J. Math. Anal. Appl. 71 (1979), 351-358. MR 548770 (80m:44010)
  • [17] R. Strichartz, $ {L^p}$-estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke Math. J. 84 (1981), 699-727. MR 782573 (86k:43008)
  • [18] A. Terras, Harmonic analysis on symmetric spaces and applications, vol. I, Springer-Verlag, 1985. MR 791406 (87f:22010)
  • [19] M. Vergne, Representations of Lie groups and the orbit method, Lecture notes from talk given in honor of Emmy Noether's 100th birthday, 1982. MR 713793 (85a:22022)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E30, 44A15, 53C65

Retrieve articles in all journals with MSC: 22E30, 44A15, 53C65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0849481-7
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society