Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type

Authors: Wei-Ming Ni and Izumi Takagi
Journal: Trans. Amer. Math. Soc. 297 (1986), 351-368
MSC: Primary 35J65; Secondary 92A09
MathSciNet review: 849484
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We derive a priori estimates for positive solutions of the Neumann problem for some semilinear elliptic systems (i.e., activator-inhibitor systems in biological pattern formation theory), as well as for semilinear single equations related to such systems. By making use of these a priori estimates, we show that under certain assumptions, there is no positive nonconstant solutions for single equations or for activator-inhibitor systems when the diffusion coefficient (of the activator, in the case of systems) is sufficiently large; we also study the existence of nonconstant solutions for specific domains.

References [Enhancements On Off] (What's this?)

  • [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623-727. MR 0125307 (23:A2610)
  • [2] R. Böhme, Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z. 127 (1972), 105-126. MR 0312348 (47:910)
  • [3] H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $ {L^1}$, J. Math. Soc. Japan 25 (1973), 565-590. MR 0336050 (49:826)
  • [4] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), 321-340. MR 0288640 (44:5836)
  • [5] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik 12 (1972), 30-39.
  • [6] C. E. Kenig, Private communications.
  • [7] J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math. 8 (1939), 78-91.
  • [8] H. Meinhardt, Models of biological pattern formation, Academic Press, London and New York, 1982.
  • [9] C. B. Morrey, Jr., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, Heidelberg and New York, 1966. MR 0202511 (34:2380)
  • [10] W.-M. Ni, On the positive radial solutions of some semilinear elliptic equations on $ {{\mathbf{R}}^n}$, Appl. Math. Optim. 9 (1983), 373-380. MR 694593 (84e:35050)
  • [11] Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal. 13 (1982), 555-593. MR 661590 (83h:58029)
  • [12] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513. MR 0301587 (46:745)
  • [13] -, A bifurcation theorem for potential operators, J. Funct. Anal. 25 (1977), 412-424. MR 0463990 (57:3928)
  • [14] F. Rothe, Global solutions of reaction-diffusion systems, Lecture Notes in Math., vol. 1072, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo, 1984. MR 755878 (86d:35071)
  • [15] G. Stampacchia, Équations elliptiques à données discontinues, Séminaire Schwartz, 1960/61, no. 4.
  • [16] I. Takagi, A priori estimates for stationary solutions of an activator-inhibitor model due to Gierer and Meinhardt, Tôhoku Math. J. 34 (1982), 113-132. MR 651710 (83f:35012)
  • [17] -, Point-condensation for a reaction-diffusion system, J. Differential Equations 61 (1986), 208-249. MR 823402 (87e:34031)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J65, 92A09

Retrieve articles in all journals with MSC: 35J65, 92A09

Additional Information

Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society