Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Some product formulae for nonsimply connected surgery problems


Authors: R. J. Milgram and Andrew Ranicki
Journal: Trans. Amer. Math. Soc. 297 (1986), 383-413
MSC: Primary 57R67
MathSciNet review: 854074
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For an $ n$-dimensional normal map $ f :{M^n} \to {N^n}$ with finite fundamental group $ {\pi _1}(N) = \pi $ and PL $ 1$ torsion kernel $ Z[\pi ]$-modules $ {K_{\ast}}(M)$ the surgery obstruction $ {\sigma _{\ast}}(f) \in L_n^h(Z[\pi ])$ is expressed in terms of the projective classes $ [{K_{\ast}}(M)] \in {\tilde K_0}(Z[\pi ])$, assuming $ {K_i}(M) = 0$ if $ n = 2i$. This expression is used to evaluate in certain cases the surgery obstruction $ {\sigma _ {\ast} }(g) \in L_{m + n}^h(Z[{\pi _1} \times \pi ])$ of the $ (m + n)$-dimensional normal map $ g = 1 \times f:{M_1} \times M \to {M_1} \times N$ defined by product with an $ m$-dimensional manifold $ {M_1}$, where $ {\pi _1} = {\pi _1}({M_1})$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R67

Retrieve articles in all journals with MSC: 57R67


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1986-0854074-1
PII: S 0002-9947(1986)0854074-1
Article copyright: © Copyright 1986 American Mathematical Society