Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homologie de l'espace des sections d'un fibré


Author: Claude Legrand
Journal: Trans. Amer. Math. Soc. 297 (1986), 445-459
MSC: Primary 55R10; Secondary 55R20, 55S45, 55T05
DOI: https://doi.org/10.1090/S0002-9947-1986-0854077-7
MathSciNet review: 854077
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a fiber bundle with a finite cohomology dimension and $ 1$-connected base $ B$ and $ 1$-connected fiber $ F$, we obtain the homology of the section space by an $ {E^1}$-spectral sequence. In the "stable" range the $ {E^1}$-terms are the homology of a product of Eilenberg-Mac Lane space of type $ K({H^{p - i}}(B;{\pi _p}F),i)$ (the same as those of the $ {E^1}$-spectral sequences which converges to the homology of the functional space $ \operatorname{Hom} (B,F)$ [10]). The differential is the product of two operations: one appears in the $ {E^1}$-spectral sequence, which converges to the homology of $ \operatorname{Hom} (B,F)$; the second one is a "cup-product" determined by the fiber structure of the bundle. This spectral sequence is obtained by a Moore-Postnikov tower of the fiber, which generalizes Kahn's methods [9].


References [Enhancements On Off] (What's this?)

  • [1] A. Borel, Topics in the homology theory of fibre bundles, Lecture Notes in Math., vol. 36, Springer-Verlag, 1967. MR 0221507 (36:4559)
  • [2] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 0077480 (17:1040e)
  • [3] H. Cartan and W. Shih, Classes d'applications d'un espace dans un groupe topologique, Séminaire E. N. S. H. Cartan 1962/1963.
  • [4] F. R. Cohen and L. R. Taylor, The homology of function spaces, Contemp. Math., vol. 19, Amer. Math. Soc., Providence, R. I., 1983. MR 711041 (85d:55016)
  • [5] A. Didierjean and A. Legrand, Suites spectrales de Serre et homotopie, Ann. Inst. Fourier, Grenoble 34 (1984), 227-242. MR 746503 (85j:55037)
  • [6] G. Didierjean, Homotopie de l'espace des équivalences d'homotopie fibrés, Ann. Inst. Fourier Grenoble 35 (1985). MR 810666 (87e:55008)
  • [7] H. Federer, A study of function spaces by spectral sequences, Trans. Amer. Math. Soc. 82 (1956). MR 0079265 (18:59b)
  • [8] A. Haefliger, Rational homotopy of the space of sections of a nilpotent bundle, Trans. Amer. Math. Soc. 273 (1982). MR 667163 (84a:55010)
  • [9] D. W. Kahn, Spectral sequence of a Postnikov system, Comment. Math. Helv. 40 (1966), 168-198. MR 0195096 (33:3301)
  • [10] C. Legrand, Sur l'homologie des espaces fonctionnels, C. R. Acad. Sci. Paris 297 (1983). MR 732851 (86a:55022)
  • [11] S. Mac Lane, Homology, Springer-Verlag, Berlin; Academic Press, New York, 1963. MR 1344215 (96d:18001)
  • [12] J. P. May, Simplicial objects in algebraic topology, Van Nostrand Math. Studies, no. 11, Van Nostrand, Princeton, N. J., 1967. MR 0222892 (36:5942)
  • [13] J. Moore, On a theorem of Borsuk, Fund. Math. 43 (1956), 195-201. MR 0083123 (18:662d)
  • [14] -, Séminaire Cartan 1954/1955, exposé 18-19.
  • [15] J.-P. Serre, Homologie singulière des espaces fibrés, Ann. of Math. 54 (1951), 425-505. MR 0045386 (13:574g)
  • [16] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)
  • [17] R. Thom, L'homologie des espaces fonctionnels, Colloque de Topologie Algébrique, Louvain, 1956.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55R10, 55R20, 55S45, 55T05

Retrieve articles in all journals with MSC: 55R10, 55R20, 55S45, 55T05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0854077-7
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society