Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the rational homotopy Lie algebra of a fixed point set of a torus action


Authors: Christopher Allday and Volker Puppe
Journal: Trans. Amer. Math. Soc. 297 (1986), 521-528
MSC: Primary 57S99; Secondary 55P62, 55Q91
DOI: https://doi.org/10.1090/S0002-9947-1986-0854082-0
MathSciNet review: 854082
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a simply connected topological space, and let $ {\mathcal{L}_{\ast}}(X)$ be its rational homotopy Lie algebra. Suppose that a torus acts on $ X$ with fixed points, and suppose that $ F$ is a simply connected component of the fixed point set. If $ {\mathcal{L}_{\ast}}(X)$ is finitely presented and if $ F$ is full, then it is shown that $ {\mathcal{L}_{\ast}}(F)$ is finitely presented, and that the numbers of generators and relations in a minimal presentation of $ {\mathcal{L}_{\ast}}(F)$ do not exceed the numbers of generators and relations (respectively) in a minimal presentation of $ {\mathcal{L}_{\ast}}(X)$. Various other related results are given.


References [Enhancements On Off] (What's this?)

  • [1] C. J. Allday, On the rational homotopy of fixed point sets of torus actions, Topology 17 (1978), 95-100. MR 0501036 (58:18501)
  • [2] -, Rational homotopy and torus actions, Houston J. Math. 5 (1979), 1-19. MR 533634 (80m:57033)
  • [3] C. J. Allday and S. Halperin, Sullivan-de Rham theory for rational Alexander-Spanier cohomology, Houston J. Math. 10 (1984), 15-33. MR 736572 (85d:55014)
  • [4] C. J. Allday and V. Puppe, On the rational homotopy of circle actions (Proc. Aarhus Sympos. on Algebraic Topology, 1982), Lecture Notes in Math., vol. 1051, Springer-Verlag, Berlin and New York, 1984. MR 764597 (86h:55014)
  • [5] H. J. Baues and J. M. Lemaire; Minimal models in homotopy theory, Math. Ann. 225 (1977), 219-242. MR 0431172 (55:4174)
  • [6] T. Chang, On the number of relations in the cohomology of a fixed point set, Manuscripta Math. 18 (1976), 237-247. MR 0426005 (54:13954)
  • [7] Y. Felix and S. Halperin, Rational L.-S. category and its applications, Publ. IRMA Lille (1980). MR 618096 (82e:55022)
  • [8] S. Halperin, Lectures on minimal models, Publ. Internes U.E.R. Math. Pures et Appl., No. 111, Univ. des Sciences et Techniques de Lille I, 1977.
  • [9] J. M. Lemaire, Algébres connexes et homologie des espaces de lacets, Lecture Notes in Math., vol. 422, Springer-Verlag, Berlin and New York, 1974. MR 0370566 (51:6793)
  • [10] J. C. Moore, Algèbre homologique et homologie des espaces classifiants, Séminaire H. Cartan 1959/60, Exposé 7.
  • [11] V. Puppe, Cohomology of fixed point sets and deformation of algebras, Manuscripta Math. 23 (1978), 343-354. MR 0494168 (58:13094)
  • [12] -, Deformation of algebras and cohomology of fixed point sets, Manuscripta Math. 30 (1979), 119-136. MR 553725 (81e:57038)
  • [13] -, P. A. Smith theory via deformations, Homotopie Algébrique et Algèbre Locale, Astérisque, 1984.
  • [14] D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295. MR 0258031 (41:2678)
  • [15] D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269-332. MR 0646078 (58:31119)
  • [16] D. Tantré, Dualité d'Eckmann-Hilton à travers les modèles de Chen-Quillen-Sullivan, Cahiers Topologie Géom. Différentielle 22 (1981), 53-60. MR 609159 (83c:55015)
  • [17] P. Tomter, Transformation groups on cohomology products of spheres, Invent. Math. 23 (1974), 79-88. MR 0334191 (48:12510)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S99, 55P62, 55Q91

Retrieve articles in all journals with MSC: 57S99, 55P62, 55Q91


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0854082-0
Keywords: Torus actions, rational homotopy Lie algebra, generators and relations, cup length
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society