On the local behavior of

Author:
Adolf Hildebrand

Journal:
Trans. Amer. Math. Soc. **297** (1986), 729-751

MSC:
Primary 11N25

DOI:
https://doi.org/10.1090/S0002-9947-1986-0854096-0

MathSciNet review:
854096

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: denotes the number of positive integers and free of prime factors . In the range , can be well approximated by a "smooth" function, but for , this is no longer the case, since then the influence of irregularities in the distribution of primes becomes apparent. We show that behaves "locally" more regular by giving a sharp estimate for , valid in the range , .

**[1]**K. Alladi,*The Turán-Kubilius inequality for integers without large prime factors*, J. Reine Angew. Math.**335**(1982), 180-196. MR**667466 (84a:10045)****[2]**N. G. de Bruijn,*On some Volterra equations of which all solutions are convergent*, Indag. Math.**12**(1950), 257-265.**[3]**-,*On the number of positive integers**and free of prime factors*, Indag. Math.**12**(1951), 50-60.**[4]**K. Dickman,*On the frequency of numbers containing prime factors of a certain relative magnitude*, Ark. Mat. Astr. Fys.**22**(1930), 1-14.**[5]**D. R. Heath-Brown,*Finding primes by sieve methods*, Proc. Internat. Congr. Math. (Warsaw 1983), Vol. 1, pp. 487-492. MR**804704 (87a:11083)****[6]**D. Hensley,*A property of the counting function of integers with no large prime factors*, J. Number Theory**22**(1986), 46-74. MR**821136 (87f:11065)****[7]**A. Hildebrand,*On the number of positive integers*and free of prime factors , J. Number Theory**22**(1986), 289-307. MR**831874 (87d:11066)****[8]**K. Norton,*Numbers with small prime factors, and the least kth power non-residue*, Mem. Amer. Math. Soc. No. 106 (1971). MR**0286739 (44:3948)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11N25

Retrieve articles in all journals with MSC: 11N25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0854096-0

Keywords:
Integers free of large primes factors,
asymptotic estimates

Article copyright:
© Copyright 1986
American Mathematical Society