Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


On the local behavior of $ \Psi(x,y)$

Author: Adolf Hildebrand
Journal: Trans. Amer. Math. Soc. 297 (1986), 729-751
MSC: Primary 11N25
MathSciNet review: 854096
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: $ \Psi (x,y)$ denotes the number of positive integers $ \leqslant x$ and free of prime factors $ > y$. In the range $ y \geqslant \exp ({(\log \log x)^{5/3 + \varepsilon }})$, $ \Psi (x,y)$ can be well approximated by a "smooth" function, but for $ y \leqslant {(\log x)^{2 - \varepsilon }}$, this is no longer the case, since then the influence of irregularities in the distribution of primes becomes apparent. We show that $ \Psi (x,y)$ behaves "locally" more regular by giving a sharp estimate for $ \Psi (cx,y)/\Psi (x,y)$, valid in the range $ x \geqslant y \geqslant 4\log x$, $ 1 \leqslant c \leqslant y$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11N25

Retrieve articles in all journals with MSC: 11N25

Additional Information

PII: S 0002-9947(1986)0854096-0
Keywords: Integers free of large primes factors, asymptotic estimates
Article copyright: © Copyright 1986 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia