On the local behavior of
Author:
Adolf Hildebrand
Journal:
Trans. Amer. Math. Soc. 297 (1986), 729751
MSC:
Primary 11N25
MathSciNet review:
854096
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: denotes the number of positive integers and free of prime factors . In the range , can be well approximated by a "smooth" function, but for , this is no longer the case, since then the influence of irregularities in the distribution of primes becomes apparent. We show that behaves "locally" more regular by giving a sharp estimate for , valid in the range , .
 [1]
Krishnaswami
Alladi, The TuránKubilius inequality for integers without
large prime factors, J. Reine Angew. Math. 335
(1982), 180–196. MR 667466
(84a:10045), http://dx.doi.org/10.1515/crll.1982.335.180
 [2]
N. G. de Bruijn, On some Volterra equations of which all solutions are convergent, Indag. Math. 12 (1950), 257265.
 [3]
, On the number of positive integers and free of prime factors , Indag. Math. 12 (1951), 5060.
 [4]
K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. Fys. 22 (1930), 114.
 [5]
D.
R. HeathBrown, Finding primes by sieve methods, 2 (Warsaw,
1983) PWN, Warsaw, 1984, pp. 487–492. MR 804704
(87a:11083)
 [6]
Douglas
Hensley, A property of the counting function of integers with no
large prime factors, J. Number Theory 22 (1986),
no. 1, 46–74. MR 821136
(87f:11065), http://dx.doi.org/10.1016/0022314X(86)900302
 [7]
Adolf
Hildebrand, On the number of positive integers ≤𝑥 and
free of prime factors >𝑦, J. Number Theory
22 (1986), no. 3, 289–307. MR 831874
(87d:11066), http://dx.doi.org/10.1016/0022314X(86)900132
 [8]
Karl
K. Norton, Numbers with small prime factors, and the least
𝑘th power nonresidue, Memoirs of the American Mathematical
Society, No. 106, American Mathematical Society, Providence, R.I., 1971. MR 0286739
(44 #3948)
 [1]
 K. Alladi, The TuránKubilius inequality for integers without large prime factors, J. Reine Angew. Math. 335 (1982), 180196. MR 667466 (84a:10045)
 [2]
 N. G. de Bruijn, On some Volterra equations of which all solutions are convergent, Indag. Math. 12 (1950), 257265.
 [3]
 , On the number of positive integers and free of prime factors , Indag. Math. 12 (1951), 5060.
 [4]
 K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astr. Fys. 22 (1930), 114.
 [5]
 D. R. HeathBrown, Finding primes by sieve methods, Proc. Internat. Congr. Math. (Warsaw 1983), Vol. 1, pp. 487492. MR 804704 (87a:11083)
 [6]
 D. Hensley, A property of the counting function of integers with no large prime factors, J. Number Theory 22 (1986), 4674. MR 821136 (87f:11065)
 [7]
 A. Hildebrand, On the number of positive integers and free of prime factors , J. Number Theory 22 (1986), 289307. MR 831874 (87d:11066)
 [8]
 K. Norton, Numbers with small prime factors, and the least kth power nonresidue, Mem. Amer. Math. Soc. No. 106 (1971). MR 0286739 (44:3948)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
11N25
Retrieve articles in all journals
with MSC:
11N25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198608540960
PII:
S 00029947(1986)08540960
Keywords:
Integers free of large primes factors,
asymptotic estimates
Article copyright:
© Copyright 1986 American Mathematical Society
