On the local behavior of

Author:
Adolf Hildebrand

Journal:
Trans. Amer. Math. Soc. **297** (1986), 729-751

MSC:
Primary 11N25

DOI:
https://doi.org/10.1090/S0002-9947-1986-0854096-0

MathSciNet review:
854096

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: denotes the number of positive integers and free of prime factors . In the range , can be well approximated by a "smooth" function, but for , this is no longer the case, since then the influence of irregularities in the distribution of primes becomes apparent. We show that behaves "locally" more regular by giving a sharp estimate for , valid in the range , .

**[1]**Krishnaswami Alladi,*The Turán-Kubilius inequality for integers without large prime factors*, J. Reine Angew. Math.**335**(1982), 180–196. MR**667466**, https://doi.org/10.1515/crll.1982.335.180**[2]**N. G. de Bruijn,*On some Volterra equations of which all solutions are convergent*, Indag. Math.**12**(1950), 257-265.**[3]**-,*On the number of positive integers**and free of prime factors*, Indag. Math.**12**(1951), 50-60.**[4]**K. Dickman,*On the frequency of numbers containing prime factors of a certain relative magnitude*, Ark. Mat. Astr. Fys.**22**(1930), 1-14.**[5]**D. R. Heath-Brown,*Finding primes by sieve methods*, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 487–492. MR**804704****[6]**Douglas Hensley,*A property of the counting function of integers with no large prime factors*, J. Number Theory**22**(1986), no. 1, 46–74. MR**821136**, https://doi.org/10.1016/0022-314X(86)90030-2**[7]**Adolf Hildebrand,*On the number of positive integers ≤𝑥 and free of prime factors >𝑦*, J. Number Theory**22**(1986), no. 3, 289–307. MR**831874**, https://doi.org/10.1016/0022-314X(86)90013-2**[8]**Karl K. Norton,*Numbers with small prime factors, and the least 𝑘th power non-residue*, Memoirs of the American Mathematical Society, No. 106, American Mathematical Society, Providence, R.I., 1971. MR**0286739**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
11N25

Retrieve articles in all journals with MSC: 11N25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1986-0854096-0

Keywords:
Integers free of large primes factors,
asymptotic estimates

Article copyright:
© Copyright 1986
American Mathematical Society