Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A strong containment property for discrete amenable groups of automorphisms on $ W\sp \ast$ algebras


Author: Edmond E. Granirer
Journal: Trans. Amer. Math. Soc. 297 (1986), 753-761
MSC: Primary 46L30; Secondary 43A07, 46L40, 46L55
DOI: https://doi.org/10.1090/S0002-9947-1986-0854097-2
MathSciNet review: 854097
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a countable group of automorphisms on a $ {W^{\ast}}$ algebra $ \mathcal{M}$ and let $ {\phi _0}$ be a $ {w^{\ast}}{G_\delta }$ point of the set of $ G$ invariant states on $ \mathcal{M}$ which belong to $ {w^{\ast}}\operatorname{cl} \operatorname{Co} E$, where $ E$ is a set of (possibly pure) states on $ \mathcal{M}$. If $ G$ is amenable, then the cyclic representation $ {\pi _{{\phi _0}}}$ corresponding to $ {\phi _0}$ is contained in $ \{ \oplus {\pi _\phi };\phi \in E\} $. This property characterizes amenable groups. Related results are obtained.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L30, 43A07, 46L40, 46L55

Retrieve articles in all journals with MSC: 46L30, 43A07, 46L40, 46L55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0854097-2
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society