Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Surgery on codimension one immersions in $ {\bf R}\sp {n+1}$: removing $ n$-tuple points


Author: J. Scott Carter
Journal: Trans. Amer. Math. Soc. 298 (1986), 83-101
MSC: Primary 57R42; Secondary 55N22, 55Q10, 57R65
DOI: https://doi.org/10.1090/S0002-9947-1986-0857434-8
MathSciNet review: 857434
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The self-intersection sets of immersed $ n$-manifolds in $ (n + 1)$-space provide invariants of the $ n$th stable stem and the $ (n + 1)$st stable homotopy of infinite real projective space. Theorems of Eccles [5] and others [1, 8, 14, 19] relate these invariants to classically defined homotopy theoretic invariants.

In this paper a surgery theory of immersions is developed; the given surgeries affect the self-intersection sets in specific ways. Using such operations a given immersion may be surgered to remove $ (n + 1)$-tuple and $ n$-tuple points, provided the $ {\mathbf{Z}}/2$-valued $ (n + 1)$-tuple point invariant vanishes $ (n \geq 5)$. This invariant agrees with the Kervaire invariant for $ n = 4k + 1$.

These results first appeared in my dissertation [2]; a summary was presented in [3]. Some results and methods have been improved since these works were written. In particular, the proof of Theorem 14 has been simplified.


References [Enhancements On Off] (What's this?)

  • [1] T. Banchoff, Triple points and surgery of immersed surfaces, Proc. Amer. Math. Soc. 46 (1974), 407-413. MR 0377897 (51:14066)
  • [2] J. Scott Carter, Surgery on immersions: A geometric approach to stable homotopy, Dissertation, Yale Univ., May 1982.
  • [3] -, Surgery theory of immersions, Proc. Northwestern Homotopy Theory Conf., (Haynes R. Miller and Stewart Priddy, eds.), Contemp. Math., vol. 19, Amer. Math. Soc., Providence, R.I., 1983. MR 711037 (84h:55001)
  • [4] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, fourth ed., Springer-Verlag, Berlin and New York, 1980. MR 562913 (81a:20001)
  • [5] Peter J. Eccles, Multiple points of codimension one immersion, Top. Sym. Siegen, (Ulrich Koshorke, ed.), Lecture Notes in Math., vol. 788, Springer-Verlag, Berlin and New York, 1979, pp. 23-38. MR 585650 (81k:57029)
  • [6] -, Multiple points of codimension one immersions of oriented manifolds, Math. Proc. Cambridge Philos. Soc. 87 (1980), 213-220. MR 553578 (81j:55014)
  • [7] -, Codimension one immersions and the Kervaire invariant one problem, Math. Proc. Cambridge Philos. Soc. 90 (1981), 483-493. MR 628831 (83c:57015)
  • [8] Michael H. Freedman, Quadruple points of $ 3$-manifolds in $ {S^4}$, Comment. Math. Helv. 53 (1978), 385-394. MR 505553 (81b:57027)
  • [9] D. Hilbert and S. Cohn-Vossen (Transl. by P. Neményi), Geometry and the imagination, Chelsea, New York, 1952, pp. 320-321. MR 0046650 (13:766c)
  • [10] D. S. Kahn and S. B. Priddy, On the transfer in the homology of symmetric groups, Math. Proc. Cambridge Philos. Soc. 83 (1978), 91-101. MR 0464229 (57:4164a)
  • [11] -, The transfer and stable homotopy theory, Math. Proc. Cambridge Philos. Soc. 83 (1978), 103-111. MR 0464230 (57:4164b)
  • [12] Ulrich Koschorke, Multiple points of immersions and the Kahn-Priddy theorem, Math. Z. 169 (1979), 223-236. MR 554526 (81a:57030)
  • [13] -, Vector fields and other vector-bundle morphisms--a singularity approach, Lecture Notes in Math., vol. 847, Springer-Verlag, Berlin and New York, 1981.
  • [14] Ulrich Koschorke and Brian Sanderson, Geometric interpretations of the generated Hopf invariant, Math. Scand. 41 (1977), 199-217. MR 0474289 (57:13936)
  • [15] -, Self-intersections and higher Hopf invariants, Topology 17 (1978), 283-290. MR 508891 (81i:55014)
  • [16] J. Lannes, Sur les immersions de Boy, Preprint, mailed to W. S. Massey in May 1982. MR 764583 (86d:57015)
  • [17] Graeme Segal, Configuration-spaces and iterated loop-spaces, Invent. Math. 21 (1973), 213-221. MR 0331377 (48:9710)
  • [18] Hirosi Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, no. 49, Princeton University Press, Princeton, N. J., 1962. MR 0143217 (26:777)
  • [19] P. Vogel, Cobordisme d'immersions, Ann. Sci. École Norm. Sup. (4) 3 (1974), 317-358. MR 0372878 (51:9082)
  • [20] R. Wells, Cobordism groups of immersions, Topology 5 (1966), 281-294. MR 0196760 (33:4946)
  • [21] J. Scott Carter, On generalizing Boy's surface: Constructing a generator of the third stable stem, Trans. Amer. Math. Soc.
  • [22] John F. Hughes, Invariants of regular homotopy and bordism of low dimensional immersions, Dissertation, Univ. of California, Berkeley, 1982.
  • [23] G. W. Whitehead, Recent advances in homotopy theory, CBMS Regional Conf. Ser. in Math., no. 5, Amer. Math. Soc., Providence, R.I., 1970. MR 0309097 (46:8208)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R42, 55N22, 55Q10, 57R65

Retrieve articles in all journals with MSC: 57R42, 55N22, 55Q10, 57R65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0857434-8
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society