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AFFINE SEMIGROUPS AND COHEN-MACAULAY RINGS 
GENERA TED BY MONOMIALS 

NG() VI~T TRUNG AND L~ TUAN HOA 

ABSTRACT. We give a criterion for an arbitrary ring generated by monomials to be 
Cohen-Macaulay in terms of certain numerical and topological properties of the 
additive semigroup generated by the exponents of the monomials. As a consequence, 
the Cohen-Macaulayness of such a ring is dependent upon the characteristic of the 
ground field. 

Introduction. Let N denote the set of nonnegative integers. By an affine semigroup 
we mean a finitely generated submonoid S of the additive monoid N n, where n is 
some positive integer. Let k[S] denote the semigroup ring of S over a field k. Then 
one can identify k[S] with the subring of a polynomial ring k[t l , ... , tn] generated 
by the monomials IX = lil ••• t:n, x = (Xl"'" Xn) E S. Obviously, every subring 
of k[t l , ... , In] generated by a finite set of monomials is the semigroup ring of the 
affine semigroup in N n generated by the exponents of the monomials. 

So one has, up to isomorphisms, a one-to-one correspondence between affine 
semigroups and affine varieties which are given parametrically by finite sets of 
monomials. When illustrating problems of algebraic geometry one almost inevitably 
tends to choose varieties of this type. Even when dealing with a quite general variety, 
either its singularities or a certain blowup may well be defined in local coordinates 
by monomials [15, 19]. Moreover, one can also use rings generated by monomials to 
study solutions of linear equations in nonnegative integers or, equivalently, in-
variants of a torus acting linearly on a polynomial ring [11, 26]. Therefore, a 
criterion for such a ring to be Cohen-Macaulay in terms of the associated semigroup 
would be very useful. It should be mentioned that the first example of a non-Coh~n
Macaulay domain (in modem language), given by F. S. Macaulay at the beginning 
of this century [17, p. 98], was the ring k[/t, Ith, Il/~, Ii] and that analyzing this 
example, Grobner [7] already posed the problem of classifying rings generated by 
monomials of the same degree with respect to their Cohen-Macaulayness. 

The first step toward such a criterion was taken by Hochster [11], who succeeded 
in characterizing normal rings generated by monomials in terms of the associated 
semigroups and showed that they are always Cohen-Macaulay. Although this result 
was motivated by a conjecture on rings of invariants of reductive linear algebraic 
groups, which was later settled [12], its proof deserved much attention. It suggested 
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the use of topological techniques in studying rings generated by monomials. The 
next step was a criterion given by Goto et al. for the case that the ring has a system 
of parameters consisting of monomials [5]. These results inspired many other works 
and were re-proved many times by different techniques, such as rational resolution 
[15], Hilbert functions of graded algebras [25], homology of polyhedral complexes 
[13,26], and the Hodge algebra [10]. 

In both steps, one used the coincidence of an affine semigroup S with one of its 
extensions to indicate the Cohen-Macaulayness of k[S]. Inspired by this phenome-
non, Goto and Watanabe [6] defined a suitable extension Sf of S (see below) and 
claimed that Sf = S is a necessary and sufficient condition for k[S] to be Cohen-
Macaulay. 

Let Z and Q denote the sets of integers and rational numbers, respectively. 
Consider the elements of S as points in the space Qn. Let G denote the additive 
group in zn generated by S and put r = rankzG. Let Cs denote the convex rational 
polyhedral cone spanned by S in Qn. Then Cs is r-dimensional. Suppose that 
Fl , ... , Fm are the (r - I)-dimensional faces of Cs. Let Sj denote the set of elements 
x E G such that x + yES for some element yES n F;, i = 1, ... , m. Then they 
define Sf = n?_lSj' 

In this paper, we shall see that the condition Sf = S is not sufficient for the 
Cohen-Macaulayness of k[S], and that one has to add some topological condition 
on the convex cone Cs to get a correct criterion. To formulate this we need some 
more notation. 

Let [1, m] denote the set of the integers 1, ... , m. For every subset J of [1, m], set 

GJ = n Sj \ U Sj' 
i~J JEJ 

and let 'lTJ be the simplicial complex of nonempty subsets I of J with the property 
n j E IS n F; *" (0). Note that one calls 'lTJ acyclic if the reduced homology group 
Hi'ITJ ; k) vanishes for all q ~ O. 

MAIN THEOREM. Let S be an arbitrary affine semigroup. Then k[S] is a Cohen-
Macaulay (resp. Gorenstein) ring if and only if the following conditions are satisfied: 

(i) Sf = S (resp. there exists an element x E G such that every element of G[l,m] is 
the difference of x by some element of S). 

(ii) For every nonempty proper subset J of [1, m], GJ = 0 or 'lTJ is acyclic. 

It will follow from some property of the Cousin complex of k[S] and from an 
explicit description of all local cohomology modules of k[Sf] in terms of GJ and 'lTJ • 

We will also give some simple methods for checking the above conditions. As a 
consequence, one immediately gets the abovementioned results of Hochster and 
Goto et al. Another application is a criterion for the Rees algebra (blowing-up) of a 
ring generated by monomials to be Cohen-Macaulay (resp. Gorenstein). In particu-
lar, as in the work of Reisner on polynomial rings modulo ideals generated by 
square-free monomials [20] where a similar link to topology is given, we will show 
that the Cohen-Macaulayness of k[S] is dependent upon the characteristic of the 
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field k. Moreover, using the main theorem, we have been able to solve Grabner's 
problem for some particular cases [31] (cf. [21, 29, and 30)). 

We would like to mention that Stanley [26] also obtained a similar result on 
modules associated with solutions of systems of linear diophantine equations, which 
overlaps with ours only in Hochster's normal case. 

This paper is organized in five sections. §1 gives a counterexample to the result of 
Goto and Watanabe via some consideration on the Rees algebras of affine semi-
group rings. In §2, S' will be related to the Cousin complex of k[S] in order to show 
that S' = S if k[S] is a Cohen-Macaulay ring. §3 deals with the local cohomology 
modules of k[S']. Criteria for k[S] to be Cohen-Macaulay (resp. Gorenstein) are 
given in §4. There we will also deal with the Buchsbaumness of k[S]. The aim of §5 
is to construct an affine semigroup ring whose local cohomology modules are just 
the reduced homology groups of a given finite simplicial complex. 

All notations introduced above will be used throughout. Moreover, if A and B are 
subsets of zn, G(A) denotes the additive group generated by A in zn, and A ± B is 
the set of elements a ± b with a E A and b E B. If x, y, ... are elements of zn, we 
will denote their components by Xi'Yi"'" i = 1, ... , n, respectively. For unex-
plained notations and standard facts in commutative algebra, algebraic topology, 
and local cohomology, we refer the reader to [18, 24, and 8]. 

ACKNOWLEDGMENT. The authors would like to thank S. Ikeda for pointing out 
that our earlier conclusion on the Cohen-Macaulayness of the Rees algebras of 
Cohen-Macaulay rings generated by monomials is false (see §1). This led us to check 
the result of [6, II]. Thanks are also due to S. Goto for encouraging our study, and to 
L. Robbiano for some useful suggestions. 

1. Counterexamples to the result of Goto and Watanabe. Let S be an arbitrary 
affine semigroup in N n. Set 

S = {x E G; PX E S for some p > O}, 
S(i) = {x E S; Xi = A}, i = 1, ... ,n. 

Then we call S standard if the following conditions are satisfied: 
(1) S = G n N n , 

(2) S(i) =F S(j) for i =F j, 
(3) rankZG(S(i») = r - 1, i = 1, ... , n. 

Geometrically, these conditions mean that Cs has exactly n (r - 1 )-dimensional 
faces lying on the hyperplane Xi = 0, i = 1, ... , n. In this case, we may assume that 
S(i) = S n F; and Si = S - S(i)' 

Goto and Watanabe [6, Theorem 3.3.3] claimed that if S is standard, then k[S] is 
a Cohen-Macaulay ring if and only if S' = S. We shall see that this is false. First, we 
have to remark that every affine semigroup can be transformed isomorphically onto 
a standard one by the following technique which is due to Hochster [11, p. 323]. 

HOCHSTER'S TRANSFORMATION. Let W denote the vector space generated by S in 
Qn. Then one can find m linear functionals 11"'" 1m from W to Q corresponding 
with Fl , ..• , Fm such that 

Cs = {x E W; li{x} ~ Oforalli}. 
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See also [15, p. 6]. Let T denote the linear transformation which sends every element 
x E W to the element (ll(X), ... , Im(x» E Qm. By replacing Ii by a suitable positive 
integer multiple, one can assume that T(S) ~ N m. Hochster has shown that T(S) is 
isomorphic to S and that 

T(S) = G(T(S)) n N m. 
Obviously, T also induces an isomorphism between the semigroups S n F; and 
T(S){iJ' i = 1, ... , m. Since S n F; =1= S n Fj for i =1= j, and rankzG(S n F;) = r -
1, we can conclude that T(S) is a standard affine semigroup in N m. Moreover, since 

T(S)i = T(S) - T(S)(i) = T(S - S n F;) = T(Si)' 
we also have T(S)' = T(S'). 

According to this transformation, one can omit the assumption on the standard-
ness of S in the claim of Goto and Watanabe. The counterexample will also be 
constructed in the nonstandard case by using the following observation. 

Let A: Qn -+ Q be a linear functional such that A(S) ~ N, and, if xES and 
A(X) = 0, then x = O. Then we call the affine semigroup 

E>,.:= {(x, p) E N n+1 ; xES and A(X) > p} 
a blowing-up extension of S. The name stems from the fact that one can define an 
N-grading on k[Ex] by setting degt X = A(X) for all xES [26, p. 190] and that 
k[Ex] is isomorphic to the graded algebra ffi;=oIp, where Ip is the ideal of k[S] 
generated by elements of degree > p. 

LEMMA 1.1. Let Ex be a blowing-up extension of S. Then E~ = Ex if and only if 
S' = s. 

PROOF. Set E = Ex. Then it is easy to see that rankzG(E) = r + 1 and CE has 
the following m + 2 r-dimensional faces: 

Pi = {( x, p) E Q n + 1; X E F; and A (x) > p > O}, 
i = 1, ... , m, and 

Pm+1 = {(x,O) E Qn+\ x E Cs }, 

Pm + 2 = {( x, p) E Q n + 1; x E Cs and A (x) = p }. 
From this it follows that 

Ei = {(x,p) E zn+l; XES;}, i = 1, ... ,m, 
Em+l = {(x,p) E zn+l; X E G and p > o}, 
Em+2 = {(x,p) E zn+l; X E G and A(X) > p}. 

Therefore, one can compute E' and get 

E' = {(x,p) E zn+l; xES' and A(X) > p > o}. 
As a consequence, E' = E if and only if S' = S. 

Now consider the case that Scanbe generated by elements x with A(X) = 1. Then 
k[Ex] is the Rees algebra ffi 00=0 mP, where m denotes the ideal of k[S] generated by 
all elements tx, x =1= O. In thls case, one knows that k[E] being Cohen-Macaulay 
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imposes certain conditions on k[S], including mr = qmr - l for every minimal 
reduction q of m [4, 14]. Note that an ideal q of k[S] is called a minimal reduction 
of m if q is generated by r elements whose initial forms in the associated graded ring 
fB;=om-P /m P + 1 form a homogeneous system of parameters of degree one, here 
r = dimk[S] because rankzG is equal to the transcendence degree of the fraction 
field of k[S] over k. 

EXAMPLE 1.2. Let S be the affine semigroup in N 2 generated by the elements 
(3,0), (2,1), (0,3). Then 

G = {x E Z2; Xl + X2 == 0 modulo 3} . 
Now one can rewrite 

S = {x E G n N 2 ; Xl *' I}. 
Using this formula, it is easy to check that S is a standard affine semigroup with 
S' = S. Obviously, k[S] = k[ti, tf!2' d] is a two-dimensional Cohen-Macaulay 
ring. Moreover, q:= (ti, d) is a minimal reduction of m:= (ti, tlt2' tn and m2 *' 
qm because titi ~ qm. Let A be the linear functional (Xl' X2) ~ (Xl + x2)/3. Then 
E" is the affine semigroup in N 3 generated by the elements (3,0,0), (2,1,0), (0,3,0), 
(3,0,1), (2,1,1), (0,3,1) and k[E,,] is isomorphic to the Rees algebra of k[S] with 
respect to m. By the above analysis, one gets E~ = E" but k[E,,] is not a 
Cohen-Macaulay ring. This yields a counterexample to the claim of Goto and 
Watanabe. 

2. The meaning of k[S']. The aim of this section is to show that S' = S is a 
necessary condition for the Cohen-Macaulayness of k[S] (the arguments of [6] do 
not work even for this conclusion). For this we have to use the notion of the Cousin 
complex of a commutative noetherian ring introduced by Sharp [22]. 

Recall that the Cousin complex C(R) of a Zn-graded commutative noetherian 
ring R with identity is a complex of graded R-modules and graded homomorphisms 

d- 2 d-1 dO . d l o ~ M- I = R ~ MO ~ MI ~ ... ~ M' ~ .... 

It is defined inductively as follows: Mi is the direct sum of the homogeneous 
localizations of cokerd i- 2 at all graded prime ideals p of R with ht p = i, and d i - l 

is the composition of the canonical epimorphism- M i- l ~ coke~di-2 and the 
homomorphism sending an element X E cokerd i- 2 to the element fB x/I of Mi. 
Sharp [22] proved that R is a Cohen-Macaulay ring if and only if C(R) is exact. 
Although he only dealt with the nongraded case, his result can be easily extended to 
the Zn-graded case as found in [6, 1.§4]. 

Now suppose that R is a domain. Then MO = R(o) and MI = fB(R(o/Rp )' 

where p runs all graded prime ideals of R with ht p = 1. Thus, ker d ° is the 
interseCtion of all homogeneous localizations Rr USing-this presentation of kerdo, 
we will prove the following 

LEMMA 2.1. Let R = k[S]. Then, with respect to the Zn-graded structure 0/ k[S] 
inherited/rom k[t l , ... , tn], kerdo = k[S']. 

This has some consequences for our further investigation. 
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COROLLARY 2.2. S' = S if k[S] is a Cohen-Macaulay ring. 

PROOF. Straightforward by the exactness of C(k[S]). 

COROLLARY 2.3. dim(k[S']!k[S]) < inf{ i; k[S]p is Cohen-Macaulay for all graded 
prime ideals p of k[S] with ht P = r - i} ~ r - 1.-

PROOF. By the stability of Cousin complexes under localizations [22, Theorem 3.5], 
k[S']p = k[S]p and therefore (k[S']!k[S])l' = 0 for all graded prime ideals p of 
k[S] such that k[S]p is Cohen-Macaulay. In particular, this condition is always 
satisfied if ht P = 1. Hence the statement is immediate. 

REMARK. We would like to mention that the Cousin complex C( R) carries much 
information on the local cohomology of R [23]. Since C(kerdo) differs from C(R) 
only at the first term, i.e. C(kerdo) has the form 

(which can be easily checked), one can use kerdo as an approximation of R in 
studying local cohomology and related subjects as shown above for k[S]. 

To prove Lemma 2.1 we have to determine all homogeneous localizations of k[S] 
at graded prime ideals of height one. This can be done purely in terms of S as 
follows. 

Let A be an arbitrary subset of G. Then we will denote by k[A] the k-vector space 
spanned by A in k[G]. If A + S ~ A, we call A an S-ideal. In this case, k[A] can be 
considered as a Zn-graded module over k[S]. If A = B \ C, where B;;;2 C are 
S-ideals, k[A] will be identified with the factor module k[B]!k[C]. 

We call a proper subset P of S a prime ideal if P is an S-ideal and S \ P is 
additively closed. It is easily seen that every graded prime ideal p of k[S] is exactly 
of the form k[P] for some prime ideal P of S and that the homogeneous localization 
k[S]l' is isomorphic to k[S - (S \ P)]. 

LEMMA 2.4. For every subset I of [1, n], set 

{ (0) P= 
I {x E S; Xi> 0 for some i E I} 

if I = 0, 

if I * 0. 

If S is a standard affine semigroup, then {PI} is the set of prime ideals of S. 

PROOF. Obviously, every PI is an S-ideal and 
S \ PI = {x E S; Xi = 0 for all i E I} 

is additively closed. Hence PI is a prime ideal of S. Conversely, let P be an arbitrary 
prime ideal of S. Let I be the set of integers i E [1, n] such that 

Pi := {x E S; Xi> O} 

is contained in P. Then PI = UiEIPi ~ P. If 1= [1, n], PI = S\ (0), hence P = Pl' 
If I c [1, n] properly, choose an element x E Pi \ P for every i E [1, n] \ I. Let y 
denote the sum of these elements. Then Yi > 0 for all i f/:. I. Therefore, if P contains 
an element z f/:. PI> i.e. Zi = 0 for i E I, one can find a positive integer p such that 
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PYi - Zi > 0 for all i E [1, n]. From this it follows that PY - Z E G n N n = S. 
Hence q(py - z) E S for some q> 0. Since pqy = qz + q(py - z) E P + S <;;; P, 
one gets yEP because S \ P is additively closed. Therefore, by the same reason, 
some of the chosen elements x must belong to P, a contradiction. So P = PI> as 
required. 

Lemma 2.1 was already known in the normal case [6,3.1.5]. 
PROOF OF LEMMA 2.1. Via Hochster's transformation (§I) we may assume that S 

is standard. In this case, one can set Si = S - S(i)' i = 1, ... , n. Since S(i) = S \ Pi' 
n 

S' = n (S - ( S \ pJ) . 
;=1 

Put Pi = k[PJ Then 
n 

k[S'] = n k[S]l'i' 
;=1 

It remains to show that {Pi} is the set of graded prime ideals of height one of k[S]. 
By Lemma 2.4, we only need to show that ht Pi = 1 or, equivalently, dim k[Sl/Pi = 
r - 1 for all i = 1, ... , n. Since k[Sl/Pi = k[S \ Pi] = k[S(i)]' this is immediate 
because r - 1 = rankzG(S(i») is the transcendence degree of the fraction field of 
k[ S(i)] over k. 

3. Local cohomology of k[S']. Given two Zn-graded modules Ml and M2 over 
k[S], one can define the Segre product 

Ml ~M2:= EB [MlL ®k [M2L, 
xEZ" 

where [Mdx and [M2lx denote the x-graded piece of Ml and M2. Obviously, 
Ml ~ M2 can be considered as a Zn-graded module over k[S] = k[S] ~k[S]. Note 
that 

k[A] ~k[B] = k[A n B] 
if A and Bare S-ideals in G. 

Let D; denote the complex 

where DiO:= k[G], D;l:= k[G\Si]' and d is the canonical map from k[G] to 
k[G \ SJ = k[Gl/k[Si]' i = 1, ... , m. Put 

D':= D{~··· ~D;". 

LEMMA 3_1. D' is a coresolution of k[S'], 

PROOF. Note that HO(DJ = k[Si] and HP(DJ = ° for all p '" 0, i = 1, .. " m. 
Then, using the Kiinneth formula [13, Chapter V, (10.1)], one has 

HO(D') = k[Sl] ~'" ~k[Sm] = k[/~\ Si] = k[S'], 

HP(D') = ° for all p '" 0, 
which yields the statement, 
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By the definition of D', we can write 

DP = E9 D[ 
[~[l,ml 

#[=P 

for all P ~ 0, where D[ is the Segre product of the modules D; with i E [. 

Let 'TT be the simplicial complex of nonempty subsets J of [1, m] with the property 
niEJS n F; "* (0). Let D; denote the subcomplex of D'consisting of the terms 

DP'= tn D 'IT • '\I7 ['J 
[EfT 

#[=P 

P ~ O. Then we have the following preliminary formula for the local cohomology 
modules of k[S'] with respect to m:= k[S \ (0)]. 

LEMMA 3.2 [6, COROLLARY 3.3.7]. H~(k[S']) = Hq(D,/D;) for all q ~ O. 

Since the proof of [6, Corollary 3.3.7] is not clear enough (some arguments do not 
work) and to make this paper self-contained, we will do it once more. 

PROOF OF LEMMA 3.2. By Lemma 3.1, one need only show that H~(D') = D,/D; 
and H~(D') = 0 for all q > O. In terms of D[, this means 

(1) H!(D[) = 0 for all q ~ 0 if [E 'TT, 

(2) H~(D[) = D[ and H~(D[) = 0 for all q > 0 if [$. 'TT. 

To prove these facts we may assume that S is a standard affine semigroup by 
using Hochster's transformation (§1). Moreover, we want to note that by definition, 

D[ = k[G\ U Si] 
iE[ 

for all subsets [ of [1, n]. 
To (1). Let x"* (0) be an arbitrary element of niE[S(i)' Since S(i) is additively 

closed, 

Si - X = S - S(i) - x ~ S - S(i) = Si 

for all i E [. Therefore, if x + y E UiE[Si for some element y E G, then y E 
U i E [Si too. From this it follows that the multiplication map by I x is bijective on D I 
and hence on H~(D[) for all q ~ O. Since every element of H~(D[) is annihilated 
by some power of IX, H~(D[) = 0, as required. 

To (2). It suffices to show that every element of D[ is annihilated by some power 
of m or, equivalently, that for any pair of elements x E G and yES \ (0), there 
exist i E [ and p > 0 such that x + py E Si' First, since y "* (0) and n i E [S(i) = (0), 
there exists i E [ such that Yi > O. For this i, one has sup{ Xi + PYi; P > O} = 00. 
Therefore, one only need to show that there is a bound for the ith components of 
elements of G \ Si' For this purpose, choose an element z E S \ S(i)' Let H denote 
the additive group generated by S(i) and z in zn. Since rankzG(S(i) = r - 1, 
rankzH = r. Thus, one can find a finite set of elements of S such that G can be 
obtained from A by translating along H, that is G = A + H. Note that 

H= U (G(S(i») +mz), U (A + G(S(i») +mz) ~ Si' 
mEZ m>O 
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Then one gets 

mEN 

Hence max{ ui; U E A} bounds the ith components of elements of G \ Si- The proof 
of Lemma 3.2 is now complete. 

Now, we shall see that every graded piece [H~(k[S'])]x can be expressed com-
pletely in terms of some simplicial subcomplex TTJ of 7T. Note that for every subset J 
of [1, m], TTJ is the simplicial complex of nonempty subsets I of J with the property 
niE[S () F; 0# (0) (see Introduction). Since [H~(k[S'])]x = 0 for all x $. G, we may 
restrict our attention to elements x E G. For such x set 

Jx := {i E [I,m]; x$. Silo 
Then the main result of this section can be formulated as follows. 

THEOREM 3.3. [H~(k[S'])]x = Hq_2( 7TJ,; k) for all q ~ o. 
PROOF. For simplicity, set J = Jx • Let I be an arbitrary subset of [1, m]. Note 

that D[ = k[G \ UiE [ Silo Then we have the following formula: 

{ kif I ~ J, 
[D[L= 0 iflrJ,J. 

Let l:l J denote the simplicial complex of all nonempty subsets of J. Let C( l:l J) be 
the oriented chain complex of l:lJ (see [24]). Then one can consider [Dlx as the 
complex Hom(C(l:lJ), k) with degree shifted by one. Therefore, by Lemma 3.1, 

[H~(k[S'])1x = Hq([Di'D~]J = Hq-l(l:lJ,l:lJ () 7T; k). 

Since Hq(l:lJ; k) = 0 for all q, from the reduced cohomology sequence of the pair 
l:l J and l:l J () 7T one gets 

Hq-l(l:lJ> l:lJ () 7T; k) = Hq-2(l:lJ () 7T; k). 

Note that l:lJ () 7T = TTJ and that cohomology and homology coincide over a field. 
Then one can conclude that 

[H~(k[S'])1x = Hq_2(7TJ; k). 

COROLLARY 3.4. (i) H~(k[S']) = o. 
(ii) H~(k[S]) = k[S"\ S], where S" denotes the set of all elements x E G such that 

x + p(S\(O» ~ Sforsomepositiveintegerp. 

PROOF. (i) is immediate because H_ 1(7TJ ; k) = 0 for every x E G. For (ii), 
x 

consider the exact sequence 
o ~ k[S] ~ k[S'] ~ k[S' \ S] ~ o. 

Since H~(k[S']) = 0, i = 0,1, we get H~(k[S]) = H~(k[S' \ S]). But H~(k[S' \ S]) 
is the set of all elements f E k[S' \ S] which are annihilated by mP for some p ~ O. 
Translating this into the language of semigroups, we get H~(k[S' \ S]) = k[S" \ S]. 

In order to derive other consequences of Theorem 3.3 we have to replace TTJ by a 
more tractable object. To this end, let P be a nondegenerate hyperplane section of 
Cs. P is a (r - I)-dimensional convex polytope with m (r - 2)-dimensional faces. 
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Let p* denote the dual polytope of P [9). Then there is a one-to-one inclusion 
reversing correspondence F - F * between faces F of P and F * of P * such that 
dim F + dim F * = r - 2. So P * has m vertices. Let Vi be the vertex of P * 
corresponding with the (r - 2)-dimensional face of P on F;, i = 1, ... , m. It is not 
hard to realize that 'fTJ is the simplicial complex of nonempty subsets I ~ J such that 
there is a proper face of p* containing all vertices Vi with i E I. Let P/ denote the 
union of all convex polytopes on 3P* spanned by a set of vertices Vi with i E I for 
some maximal I of 'fTJ. 

LEMMA 3.5. P/ and the geometric realization I'fTJI have the same homotopy type. 

PROOF. We shall prove a more general statement. Let U be a finite union of 
convex rational polytopes in Qn such that the intersection of two polytopes of U is 
either empty or a proper common face. Suppose that VI' ••• , Vs are the vertices of the 
polytopes of U. Let 'fT(U) denote the simplicial complex of nonempty subsets Iof 
[1, s) such that there is a polytope of U which contains all vertices Vi with i E I. 
Then there exists a canonical linear map f from 1'fT(U)1 onto U. We claim that f is a 
homotopy equivalence. That is trivial if U consists of only one polytope because 
1'fT(U)1 and U are contractible spaces in this case. If U consists of more than one 
polytope, we take a polytope u out of U. Let V denote the union of the remaining 
polytopes. By induction, we may assume that f induces a homotopy equivalence 
between 1'fT(u)l, 1'fT(V)I, 1'fT(u n V)I and u, V, un V, respectively. Therefore, f 
must be a homotopy equivalence between 1'fT(U)1 = 1'fT(u)1 u 1'fT(V)1 and U = u U V, 
as claimed. Since 'fTJ = 'fT(P/), this yields the statement. 

COROLLARY 3.6. 
(i) 

ifq"*r, 
if q = r. 

(ii) If J "* [1, m), Hq _ 2 ( 'fTJ; k) = 0 for q ~ r. 
(iii) If J E 'fT or #J = m - 1, Hq _ 2 ('fTJ; k) = 0 for all q. 

PROOF. By Lemma 3.5, we may replace any 'fTJ by Pl. Then (i) follows from the 
fact that p[tm] = 3P* is homeomorphic to a (r - 2)-dimensional sphere. Since 
every proper subspace of 3P* contains no (r - 2)-dimensional "hole", (ii) is also 
immediate. In particular, if J E 'fT or #J = m - 1, PJ is homeomorphic to a ball, 
hence (iii). 

Now we will combine Theorem 3.3 with Corollary 3.6 to get some description of 
H~(k[S')), i ~ 2. 

First, we would like to remark that Theorem 3.3 divides G into classes of points x 
with the same Jx ' It is easily seen that these classes are exactly the sets 

GJ := n Si\ U Sj 
iftJ jEJ 

introduced in the Introduction. 
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COROLLARY 3.7. For all q < r, there is an isomorphism of k-vector spaces 

H~(k[S']) == ffi k[GJ ] ®kHq-2(7TJ; k). 
J~'1T 

#J.;;m-2 
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PROOF. By Corollary 3.6, H q _ 2 (7TJ ; k) = 0 if J E 7T or #J = m, m - 1. There-
fore, by Theorem 3.3, taking the sum of all Hq - 2 (7TJx ; k) over x E G will yield the 
above formula for H~(k[S'D. 

REMARK. We are unable to determine the module structure of the above presen-
tation of H~(k[S'D, q < r. 

COROLLARY 3.8. H~(k[SD == H~(k[S'D == k[G[l,md. 

PROOF. First, consider the exact sequence 

o - k[S] - k[S'] - k[S' \ S] - O. 
Note that dim k[S' \ S] ~ r - 2 by Corollary 2.3. Then one gets H~(k[SD == 
H~(k[S'D. By Theorem 3.3 and Corollary 3.6, 

{ 
0 if x $. G[l,ml' 

[H~(k[S'])] x = k if x E G[l,m]. 

Therefore, using Lemma 3.2, it is not hard to see that 

H~(k[S']) == k( G[l,m]l· 

EXAMPLE 3.9. Let S be the affine semigroup in N 4 generated by the elements 
(3,0,0,3), (2,1,0,3), (0,3,0,3), (3,0,1,0), (2,1,1,0), (0,3,1,0). It is easily seen that 
S is isomorphic to the affine semigroup Ex of Example 1.2. Note that 

G = {x E Z4; Xl + X2 = 3X3 + X4 == 0 modulo 3}. 

Then one can write 

From this it follows that 

S = G n N 4 , G(S(i») = {x E G; Xi = O} 

for i = 1,2, 3, 4. Hence S is a standard affine semigroup. Now one can identify Si 
with S - S(i) and get 

Sl = {x E G; Xl ~ 0, Xl =/:- I}, 
Si = {x E G; Xi ~ O}, i = 2,3,4, 

which implies S' = S. Obviously, 7T consists of the sets 0, {I}, {2}, {3}, {4}, {1,3}, 
{I, 4}, {2, 3}, {2, 4}. Hence p* is quadrilateral: 

vl D v4 

V3 v2 

There are only two sets J = {1,2}, {3,4} with the properties J $. 7T and IJI ~ 2. 
Since the corresponding simplicial complex TTJ consists of two points, 

- {k ifq=O, 
Hi 7TJ ; k) = 0 if q =/:- o. 
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On the other hand, G{I,2} = {(I, -1,0, O)}, G{3,4} = 0. Summing up, one gets 

{
o if q * 2,3, 

H~(k[S]) = k ~f q = 2, 
k [G[I,4]] If q = 3, 

where H~(k[SD is concentrated in degree (1, -1,0,0) E S3 U S4' This yields a 
counterexample to the formula [H~(k[Sf])]X = 0, X E U;'!.IS;, given in [6, Lemma 
3.3.8]. Actually, this was the critical point leading to the mistake of [6, Theorem 
3.3.3]. 

4. Cohen-Macaulayness of k[S]. Now we are going to prove the Main Theorem of 
the Introduction. According to Corollary 3.6, it can be reformulated as follows. 

THEOREM 4.1. k[S] is Cohen-Macaulay (resp. Gorenstein) if and only if the 
following conditions are satisfied: 

(i) Sf = S (resp. G[I,m] = X - S for some x E G), 
(ii) For every nonempty subset J of [1, m] with J rt. 'TT and #J ~ m - 2, GJ = 0 or 

Hi'TTJ; k) = 0 for all q < r - 2. 

PROOF. Concerning the Cohen-Macaulayness of k[S], we may assume that Sf = S 
by using Corollary 2.2. In this case we may apply Corollary 4.7 and get the 
statement because k[S] is Cohen-Macaulay if and only if H~(k[SD = 0 for all 
q < r [8]. It is also known that k[S] is Gorenstein if and only if k[S] is Cohen-
Macaulay and its canonical module 

K:= Homk(H~(k[S]), k) 

is isomorphic to k[S] with degree shifted by some x E G, see [6, Corollary 2.2.3 or 
25, Theorem 6.1]. Set C = G[l,m]' By Corollary 3.8, H~(k[SD == k[C]. Hence 
K == k[ -C]. Therefore, it suffices to show that the condition C = x - S implies 
Sf = S. Let y be an arbitrary element of Sf. If y rt. S, x - y rt. C. Thus, x - yES; 
for some i E [1, m]. Since y E Sf k S;, XES; + Y k S; too. From this it follows 
that x rt. C = x - S, a contradiction. 

REMARK. In Theorem 4.1, one can replace 'TTJ by the simplicial complex 

'TT/:= {IkJ; J\Irt.'TT}. 

For, using the one-to-one correspondence 1+-+ J\I between faces of 'TTJ and 'TT/, 
one can check that 

Hq{'TT/; k) = Hs-q(~J,'TTJ; k) = Hs-q-I('TTJ; k), 

where ~ J is the simplicial complex of all nonempty subsets of J and s is the number 
of elements of J. 

In the following, we will give an affine semigroup which satisfies condition (i) of 
Theorem 4.1 but not condition (ii). 

ExAMPLE 4.2. Suppose that 

G = {x E Z4; Xl + X2 = X3 + X4}, 

S = {x E G () N 4; Xl * 1, X3 * I}. 
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It is not hard to see that S is a standard affine semigroup. Therefore, one can set 
Si = S - S(i) and get 

{ {x E G; X i ~ 0, Xi * I}, ; = 1,3, s= 
I {XEG;Xi~O}, ;=2,4. 

From this it follows that 
G[1,4) = {x E G; Xi < 0 or Xi = 1 for; = 1,3, Xi < 0 for i = 2,4} 

= (1, -1, 1, -1) - S. 
Hence condition (i) of Theorem 4.1 is satisfied. On the other hand, it is easily seen 
that 'IT consists of the sets 0, {I}, {2}, {3}, {4}, {1,3}, {1,4}, {2,3}, {2,4}. For 
J= {1,2} or {3,4}, 'lTJ consists of two points. Since G{l,2} = {(0,0,1,-1)} and 
G{3,4} = {(I, -1,0, O)}, condition (ii) of Theorem 4.1 is not satisfied. Therefore, by 
Corollary 3_7, k[S] is not Cohen-Macaulay. This yields a counterexample to [6, 
Theorem 3.3.3] where one also gave a false criterion for the Gorensteinness of k[S] 
containing only the condition G[l,m) = X - S. 

To check condition (i) of Theorem 4.1 one should make use of the following 
notation. 

Let A be a finite set of elements of S \ (0) such that A spans the convex cone Cs. 
Then we will denote by SA the set of elements x E G such that x + yES for all 
elements y of some minimal generic subset of A, where we call a subset B of S 
generic if B n F; * 0 for all ; = 1, ... , m. 

LEMMA 4.3. S' = S if and only if SA = S. 

PROOF. Since S ~ SA ~ S', it suffices to show that SA = S implies S' = S. 
Without restriction, we may assume that S is standard (§1). Let x be an arbitrary 
element of S'. Then for every i E [1, n], one can find an element y(i) E S(i) such 
that x + y(i) E S. Since A spans Cs, one may assume that 

y(i) = L p;i)Z 
zEAns(i) 

for some integers p;i) ~ O. Put 
>I 

p:= L P(i) 
z • 

i=1 zEAnS(i) 

Then we will prove by induction on p that xES. Of course, we may assume that 

L p?) > 0 
zEAnS(i) 

for every i E [1, n]. From this it follows that p ~ n. If p = n, y(i) = z for some 
z E A n S(i)' Therefore, one can find a minimal generic subset B of A such that 
x + z E B for all z E B, whence x E SA = S. If p > n, there exists an integer 
j E [1, n] such that 

L p;j) > 1. 
zEAns(i) 
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Fix an element z' E A n S(i) such that p;!> > O. Consider the element x':= x + 
y(}) - z'. Then x' + z' E S, x' + y(i) E S for i =1= j. Since 

L L p?) + 1 ~ P - 1, 
i",} zEA nS(j) 

x' E S by the induction hypothesis. Now, one can replace y(j) by the element 
y(}) - z'. Then, again by the induction hypothesis, we can conclude that xES. 

As an example for Lemma 4.3, consider the simplicial case of [5 and 25]. Recall 
that an affine semigroup S is called simplicial if Cs can be spanned by r elements 
e1, ••• , er of S. Algebraically, this means that k[S] has a homogeneous system of 
parameters of the form tel, ... , t e,. Since Cs is r-dimensional, we can conclude that 
Cs has exactly r extreme rays passing through e1, ••• , er • Thus, Cs has only r 
(r - I)-dimensional faces and each of them is spanned by r - 1 elements of the set 
A:= {e 1, ••• ,er }. As a consequence, the minimal generic subsets of A are exactly 
the subsets of two elements. From this it follows that 

SA = {x E G; x + ei E S, x + ej E S for some i =1= j}. 
COROLLARY 4.4 [5, THEOREM 5.1, 25, THEOREM 6.4]. Let S be a simplicial affine 

semigroup. Let e1, ••• , er be elements of S which span Cs. Then k[S] is Cohen-Macaulay 
(resp. Gorenstein) if and only if 

{x E G; x + ei E S, x + ej E S for some i =1= j} = S 

(resp. G[l,r) = X - Sfor some x E G). 

PROOF. By Lemma 4.2, one only needs to show that condition (ii) of Theorem 4.1 
is satisfied. Let J be an arbitrary proper subset of [1, r]. Since the intersection of the 
faces F;, i E J, contains some element of {e1, •• • , er }, 'lrJ is the simplicial complex 
of all nonempty subsets of J, whence acyclic. 

To check condition (ii) of Theorem 4.1 one can also use the artinian property of 
local cohomology modules [8]. 

LEMMA 4.5. 'lrJ is acyclic if sup { Xi; x E GJ , i = 1, ... , n} = 00. 

PROOF. By Theorem 3.3, if Hq _ 2 ('lrJ ; k) -=1= 0 for some q, then [H~(k[S'])]x =1= 0 
for all x E GJ • Therefore, if sup { Xi; x E GJ , i = 1, ... , n} = 00, one can conclude 
that H~(k[S']) is not artinian, a contradiction. 

The following lemma will be used many times in our further investigation. 

LEMMA 4.6. Let S be a standard affine semigroup and J a subset of [1, n] such that 
there exists an element y E GJ with Yj < 0 for all j E J. Then sup { Xi; x E GJ } = 00 

for all i rt. J. 

PROOF. By the definition of standard affine semigroups one can find an element 
z E S such that Zi > 0 for all i E [1, n]. For any positive integer p, choose a positive 
integer q such that qyj + PZj < 0 for all j E J. Then qy + pz rt. Sj for all j E J. 
For i rt. J, qy + pz E Si because y E Si' Therefore, qy + pz E GJ . Since Yi ~ 0, 
sup { qyi + PZi; p > O} = 00. 
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Now, from Theorem 4.1 and Lemma 4.6 one can easily derive Hochster's result on 
the Cohen-Macaulayness of normal affine seroigroup rings. Recall that an affine 
seroigroup S is called normal if S = S, where 

S:= {x E G; px E S for some p > O}. 

COROLLARY 4.7 [11, THEOREM 1, 25, THEOREM 6.7]. Let S be a normal affine 
semigroup. Then k[S] is Cohen-Macaulay. Moreover, k[S] is Gorenstein if and only if 
G[l,m) = X - Sforsomex E G. 

PROOF. Since S ~ S' ~ S = S, S' = S. It remains to show condition (ii) of 
Theorem 4.1. For this, we may assume that S is standard and set Sj = S - S(i)' 
i = 1, ... , n (§I). By Lemmas 4.5 and 4.6, it is sufficient to show that Sj = {x E G; 
x j ~ O} because this implies 

GJ ~ {x E G; Xj < 0 for all i E J} 
for all subsets J of [1, n]. Let x be an arbitrary element of G with Xj ~ o. Choose an 
element y E S(j) with Yj > 0 for all j * i (this is possible because S(i) * S(j). Then 
Xj + PYj ~ 0 for p sufficiently large. Thus, x + PY E G n N n = S = S. It follows 
that xES - S(j) = Sj. Hence we get the above formula for Sj. 

Theorem 4.1 can be also used to study the problem when a blowing-up extension 
EA of S (see definition in §I) yields a Cohen-Macaulay (resp. Gorenstein) ring 
k[EA]· 

LEMMA 4.8. Let EA be a blowing-up extension of S. Then k[EA] is Cohen-Macaulay 
(resp. Gorenstein) if and only if the following conditions are satisfied: 

(i) S' = S (resp. G[l,m) = X - Sforsomex E Gwith A(X) = -2). _ 
(ii) For every nonempty proper subset J of [1, m], A( GJ) ~ {-I} or H/7TJ; k) = 0 

for all q < r - 2. 
(iii) A(G[I,m) n N = 0. 

PROOF. Set E = EA. By Lemma 1.1, E' = E if and only if S' = S. So, for the 
Cohen-Macaulay case, one need only prove that condition (ii) of Theorem 4.1 
formulated for E is equivalent to the above conditions (ii) and (iii). First, we note 
that the convex cone CE is (r + I)-dimensional and that CE has m + 2 r-dimen-
sional faces PI' ... ' Pm+ 2 as described in the proof of Lemma 1.1. Let I be an 
arbitrary nonempty proper subset of [1, m + 2]. Let t/; [ denote the simplicial 
complex of nonempty subsets I' of I such that nj E I' E n Pj * (0) and set 

GAE) = n Ej \ U Ej. 
j~[ iE[ 

Put J = I n [1, m]. Then we have to distinguish three cases: 
(1) 1= J. Then t/;[ = 7TJ , and 

G[(E) = {(x,p) E zn+l; X E GJ and A(X) ~ p ~ O} 
(this follows from the presentations of PI' ... ' Pm' E1, ••• , Em in the proof of 
Lemma 1.1). Obviously, G[(E) = 0 if and only if A(GJ ) n N = 0. 

(2) 1= J U {m + I} or 1= J U {m + 2}. Then t/;[ is the join of TTJ with the 
point {m + I} or {m + 2}. Therefore, t/; [ as the cone of TTJ is acyclic [24]. 
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(3) 1= J U {m + 1, m + 2}. Then J is a proper subset of [1, m]. Since 1¥J is the 
join of 'TTJ with the complex {{m + I}, {m + 2}}, iIi""'[; k) = iIq('TTJ; k) for all q. 
Moreover, since 

G [( E) = {( X, p) E Z n + 1; X E G J and X (x) < p < O}, 

G[(E) = 0 if and only if X(GJ ) ~ {-I, 0, I, ... }. From all these facts, one can 
conclude that condition (ii) of Theorem 4.1 formulated for E is equivalent to (ii) and 
(iii), where (iii) comes from the condition G[l,m](E) = 0 because "",[I,m] = 7T[l,m] is 
not acyclic (Corollary 3.6(i». Concerning the Gorenstein case, one need only show 
that G[1,m+2](E) = (x, p) - E for some (x, p) E G(E) if and only if G[l,m] = X - S 
for some x E G with X(x) = -2. Since 

G[I,m+2](E) = {(y,q) E zn+l; y E G[l,m] and X(y) < q < O}, 

the first condition is satisfied if and only if there exist x E G and p E Z such that 
(4) G[l,m] = X - S, 
(5) X(x - y) ~ p - q ~ ° for any y E G[l,m] and q E Z with X(y) < q < 0, 
(6) X(x - z) < p - s < ° for any z E Sand s ~ ° with X(z) ~ s. 

Obviously, (5) (resp. (6» can be written as X(x) ~ p - 1 and p ~ -1 (resp. 
X(x) < p < 0). Hence (5) and (6) are satisfied iff X(x) = -2 and p = -1. The proof 
is now complete. 

EXAMPLE 4.9. k[S] need not be a Cohen-Macaulay ring if k[E~] is Cohen-
Macaulay. Let S be the affine semigroup of Example 3.9. Let X be the linear 
functional x ~ Xl + 2X2 from Q4 to Q. We have seen that k[S] is a non-Cohen-
Macaulay ring with Sf = S and that, for an arbitrary nonempty proper subset J of 
[1,4] with J"* {I,2}, GJ = 0 or iIi'TTJ; k) = ° for all q. If J = {I,2}, GJ = 
{(I,-I,O,O)} and X(GJ ) = {-I}. Since G[I,4] = {x E Q4; Xl < ° or Xl = 1, Xi < 0, 
i = 2, 3, 4, and Xl + X2 = 3X3 + x 4 = 3p for some p E Z}, X(G[1,4]) () N = 0. 
Therefore, by the above criterion, k[E~] is Cohen-Macaulay. It should be noted that 
if X is the linear functional X ~ Xl + x 2, k[E~] is not Cohen-Macaulay. 

We conclude §4 with some observation on the Buchsbaumness of affine semigroup 
rings. Recall that a local ring A with maximal ideal q is called a Buchsbaum ring if 
for every system of parameters al , ... , ad of A, 

(al,oo.,aJ: q = (al,oo.,a i ): q2 

for i = 0, ... , d - 1 [27, 28]. Of course, Buchsbaum rings are natural generalizations 
of local Cohen-Macaulay rings. 

Goto [3] claimed that k[S]m is a Buchsbaum ring if and only if Sf + (S \ (0» ~ S 
(the proof uses [6, Theorem 3.3.3]). This result is also false by the following example. 

EXAMPLE 4.10. Let S be the affine semigroup in N 3 generated by the elements 
(3,0,0), (2,1,0), (0,3,0), (0,3,1), (3,0,1), (4,2,1), (5,1,2), (3,1,2). Then it is not 
hard to see that Sf is the affine semigroup E~ of Example 1.2 and that Sf + (S \ (0» 
~ S. But k[S]m is not a Buchsbaum ring because ti, dt3 form a part of a system of 
parameters of k[S]m with 

titit3m2 ~ (ti, dt3 ), titit3 • tit3 f/. (ti, dt3)' 
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It is interesting to note that from the formula for local cohomology modules of k[S'] 
(given in Example 3.9 for another but isomorphic affine semigroup) one can even 
conclude that k[S']m is a Buchsbaum ring [28, Corollary 1.1]. 

LEMMA 4.11. S' + (S \ (0» ~ S if k[S]m is a Buchsbaum ring. The converse holds 
if k[S'] is Cohen-Macaulay. 

PROOF. If k[S]m is a Buchsbaum ring, k[S]p is Cohen-Macaulay for all graded 
prime ideals p =!- m of k[S] [2, (3.5)]. Thus, by Corollary 2.3, dim k[S' \ S] = o. By 
Corollary 3.4, this implies H~(k[SD::; k[S' \ S] (S" = S'). Therefore, by [28], 
k[S' \ S] is annihilated by m, i.e. S' + (S \ (0» ~ S. Conversely, if S' + (S \ (0» ~ 
S and if k[S'] is Cohen-Macaulay, then mk[S' \ S] = 0 and H~(k[S'D = 0 for all 
q. Therefore, from the exact sequence 

0- k[S] - k[S'] - k[S'\S] - 0 
one can derive that 

H~(k[S]) = {~[S' \ S] 
ifq=!-l,r, 
ifq=l. 

Hence by [22, Corollary 1.1], k[S]m is a Buchsbaum ring. 
REMARK. If S is a simplicial affine semigroup, k[S'] is always Cohen-Macaulay 

because (S')' = S'. In this case, from Lemma 4.11 one can derive a simple criterion 
for k[S]m to be Buchsbaum which is similar to Corollary 4.4 [29, Lemma 3]. It 
remains an open question whether there exists a general criterion for k[S]m being 
Buchsbaum in terms of S. 

5. Dependence upon the characteristic of k. The investigation of §3 leads us to 
suspect that the vanishing of local cohomology modules of k[S] may depend upon 
the characteristic of k. We can actually confirm this by the following result. 

THEOREM 5.1. For every finite Simplicial complex 6. with r vertices, there exists an 
affine semigroup S with rankzG = r such that H~(k[SD = Hq_2 (6.; k) for q = 
0, ... , r - 1. 

The proof of Theorem 5.1 is based on the following observations. 

LEMMA 5.2. Let L be a subgroup of zn such that for every i = 1, ... , n, there exists 
an element x E L with Xi = 0, x j > 0 for all j =!- i. Let S1' ... ' sn be arbitrary 
nonnegative integers. Put 

S = {x E L n N n ; Xi = 0 or Xi> Si' i = 1, ... , n}. 
Then S is a standard affine semigroup with G = L, S' = S. 

PROOF. First, we have to check the conditions of standard affine semigroups given 
in §1. Choose an element xES such that Xi> 0 for all i = 1, ... , n. If e1,···, es 
generate L, so do x, e1 + px, ... , es + px for every integer p. Since e1 + px, ... , es 

+ px E S for p sufficiently large, G = G(S) = L. From this it follows that S = G 
n N n• By the assumption on L, we also have S(i) =!- S(j) for i =!- j. Moreover, using 
the same argument as above, we can show that G(S(i) = G(L n Hi)' where Hi 
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denotes the hyperplane Xi = 0, i = 1, ... , n. Let W denote the linear space spanned 
by Lin Qn. Since L n Hi spans the space W n Hi and W rt. Hi' 

rankzG{S(i») = dimQW n Hi = dimQW - 1 = r - l. 

Therefore, we can conclude that S is a standard affine semigroup. Now we can set 
Si = S - S(i) and get 

Si = {x E L; Xi = 0 or Xi > Si}' 

i = 1, ... , n. From this we see that S' = n~=l Si = S. 
LEMMA 5.2 will be used to give a large class of affine semigroup S with S' = S 

such that fl = '1TJ for some J c [1, n). 
Let fl[l,r] be the simplicial complex of all nonempty subsets of [1, r). Consider fl 

as a subcomplex of fl[l,r]' Suppose that fl[l,r] \fl has s minimal simplexes. Then we 
will denote these simplexes by I r + 1, ••• , In' n = r + s. 

LEMMA 5.3. Suppose that fl =1= fl[l,r]' Let 
r 

L aijJ0 = aiXi, 
j-I 

i=r+l, ... ,n, 

be a system of linear equations with integral coefficients such that a i > 0, Ii = {j E 

[1, r); aij ~ O}, and, if aij ~ 0, aij + Lift Ii ail> O. Let L be a subgroup of the 
additive group of integral solutions of (*) with rankzL = r. Let Sl"'" Sn be arbitrary 
integers. Put 

S = {x E L n Nn; Xi = 0 or Xi > Si' i = 1, ... , n }. 

Then S is a standard affine semigroup with G = L, S' = S, and '1T[l,r] = fl. 

PROOF. Let I be an arbitrary subset of [1, r). If IE fl, I ~ Ii for all i = r + 
1, ... , n. Hence L jft Iaij > 0 by the assumption. Set a = a r + l ••• an' Consider the 
solution y of (*) with 

if i E I, 
if i E [1, r] \1, 
ifi E [r+ l,n], 

where [r + 1, n) denotes the set of integers r + 1, ... , n. Since rankzL = r is the 
rank of the group of integral solutions of (*) over Z, all sufficiently large multiples 
of y must belong to L and, therefore, to S. From this it follows that ni E I S(i) =1= (0). 
If I $. fl, I ~ Ii for some i E [r + 1, n). In this case, if X E S(j) for all j E I, from 
the equation 

r 

L aijxj = aixi 
j=l 

we can conclude that Xj = 0 for all j E [1, r), j = i and, therefore, for all j E [1, n) 
by using the other equations of (*). So we have proved that 

fl = {I c [1, r]; n S(i) =1= (O)}. 
iEI 
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It remains to show that S is a standard affine semigroup with L = G, Sf = S. For 
this we need only show that L satisfies the condition of Lemma 5.2. First, for every 
i E [1, r), one can consider i as a simplex of .:l. Hence, as shown above, L has an 
element x with Xi = 0, xj > 0 for all j,p i. For i E [r + 1, n), put 

b = - L aij , C = L au· 
j<lcl, JEI, 

Then b and C are positive integers with b < c. Consider the integral solution z of (*) 
with 

Obviously, Zi = O. For t ,p i, t E [r + 1, n), 

if t Eli' 
if t E [1,r]\Ii , 

iftE [r+ l,n]. 

Zt ~ ab (a tu + L atj ) > 0, 
at j<lcl, 

where u is some element of It \ Ii. Therefore, we can also conclude that L has an 
element x with Xi = 0, Xj > 0 for all j,p i. 

PROOF OF THEOREM 5.1. If .:l is acyclic, one only need to set S = N r • Assume that 
.:l is not acylic. Then .:l ,p .:l[l,r]. Consider the following linear equations 

L rXj - L Xj=(mi-r+n;)Xi, 
JEI, JEll, r]V, 

i = r + 1, ... , n, where nj = #1;. Let L be the group of integral solutions x of the 
system of the above equations with Xi == Xj modulo 2 for all i, j = 1, ... , n. 
Obviously, rankzL = r. Put 

S = {x E L n N n ; Xi ,p 1 for all i E [1, r]}. 
By Lemma 5.3, S is a standard affine semigroup with G = L, Sf = S, and '7T[l,r] = .:l. 
Therefore, by Corollary 3.7, one has to show that G[l,r] contains only one element 
and that for every nonempty proper subset J,p [1, r) of [1, n), GJ = 0 or '7TJ is 
acyclic. Note that 

{ {X E L; x; ~ 0 and Xi ,p I} 
S.= 

, {xEL;x;~O} 

if i E [1,r], 
ifiE[r+l,n]. 

Then one can easily check that (1, ... ,1) E G[l,r]. Therefore, it is sufficient to prove 
the following claim. 

CLAIM. Let J be an arbitrary nonempty proper subset of [1, n). Suppose that GJ 

contains an element X ,p (1, ... ,1). Then '7TJ is acyclic. 
Assume the contrary. Then, for all i E [1, n), sup { Yj; Y E GJ } < 00 by Lemma 

4.5. By Lemma 4.6, Xj ~ 0 for some j E J. Note that 

GJ = n S; \ U Sj. 
i<lcJ iEJ 
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Then, by the above formula for Si' this is only possible if j E [1, r] and xi = 1. 
Therefore, for all i E [1, n], Xi *' 0 because Xi == 1 modulo 2. Let P be an arbitrary 
positive integer. Then (p + l)xi - P ~ 0 iff Xi ~ 0 and (p + l)xi - p = 1 iff 
Xi = 1, i = 1, ... , n. Therefore (p + l)x - p(l, ... , 1) E Si if and only if X E Si' 
So, like X E GJ , (p + l)x - p(l, ... , 1) E GJ . Hence, by the above assumption, 
(p + l)xi - p cannot be arbitrarily large. Hence either Xi = 1 or Xi < O. As a 
consequence, X ~ Si for all i E [1, r], which implies J ;;2 [1, r]. Put 

r 

1:= {i E [l,r]; Xi = 1}, a:= 2TI(rn i - r + nJ. 
i=l 

Consider the element Y E L with 

{
o 

y. = aXi 

I aXi - a(rb - c)/(rn i - r + nJ 

if i E I, 
if i E [l,r]\I, 
ifiE[r+1,n]' 

where b:= #(InIi) and c:= #(I\Ii)' We shall see that for all iE[l,n], 
X + PY E Si if and only if X E Si' For i E [1, r], that is immediate. For i E [r + 1, n], 
we have to show that Xi + PYi ~ 0 if and only if Xi ~ O. If Xi < 0, 

( ) a[rb+(r-ni-c)+2ni+r(ni-2)] y.=ax+1 - <0 
I I rni-r+n i 

because r ~ ni + c and ni ~ 2 (~ is not acyclic). Hence Xi + PYi < O. If Xi ~ 0, 
then Xi = 1. In this case, if 

a [r(n i - 1 - b) + c + n;] 
Y = ~ 0 

I rn.-r+n. 
I I 

we must have b = ni, i.e. Xi = 1 for all j E Ii' Now, from the equation associated 
with Ii we get 

L Xi = r - n i · 
jE[l,rlVi 

Since Xi ~ 1 and #([1, r] \ I;) = r - n i , this implies Xi = 1 for all j E [1, r] \ Ii 
and therefore for all j E [r + 1, n] by using the other equations. Hence X = 

(1, ... ,1), a contradiction. Thus, we must have Yi> 0 and, therefore, Xi + PYi ~ O. 
So we have proved that X + PY E Si if and only if X E Si for all i E [1, n]. Thus 
X + PY E GJ . Hence Xi + PYi cannot be arbitrarily large. Hence Yi ~ O. For i E 
[r + 1, n], this implies Xi < 0 by the above analysis. From this it follows that X ~ Si 

for i E [r + 1, n]. Hence J;;2 [r + 1, n]. Summing up, we get J = [1, n], a con-
tradiction. So we have proved the claim and, therefore, Theorem 5.1. 

Now we will illustrate Theorem 5.1 by giving an affine semigroup ring k[S] whose 
Cohen-Macaulayness depends upon the characteristic of k. 

EXAMPLE 5.4. Let ~ be the simplicial complex associated with the minimal 
triangulation of the projective plane: 
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3 3 

Then I:l can be considered as a subcomplex of the simplicial complex I:l [1,6) of 
nonempty subsets of [1,6]. Obviously, I:l [1,6) \ I:l has the following 10 minimal 
simplexes: {1,2,3}, {1,2,4}, {1,3,5}, {1,4,6}, {1,5,6}, {2,3,6}, {2,4,5}, {2,5,6}, 
p, 4, 5}, p, 4, 6}. Consider the system of linear equations 

6(X1 + X2 + X3) = X4 + Xs + X6 + 15X7 , 

6(Xl + X2 + X4 ) = X3 + Xs + X6 + 15Xg , 

6(Xl + X3 + Xs) = X2 + X4 + X6 + 15X9 , 

6(Xl + X4 + X6) = X2 + X3 + Xs + 15Xlo , 

6(X3 + X4 + X6) = Xl + X2 + Xs + 15X16 • 

Let S be the affine semigroup of solutions x E N 16 of this system of linear 
equations with Xi == Xj modulo 2 for all i, j E [1,16] and Xi "* 1 for all i E [1,6]. 
Then, by the proof of Theorem 5.1, dimk[S] = 6 and H~(k[S]) = Hq _ 2(1:l; k) for 
q = 0, ... ,5. Since 

if q "* 3, 
if q = 3, 

one can conclude that k[S] is a Cohen-Macaulay ring if and only if char(k) "* 2, cf. 
[20] for a similar result. 

Another consequence of Theorem 5.1 is the following result concerning the 
existence of a unique minimal Macaulayfication of an affine semigroup ring. 

COROLLARY 5.5. There exist non-Cohen-Macaulay affine semigroup rings k[S] 
which are the intersections of all Cohen-Macaulay rings k[E] with E ;;2 S. 

PROOF. Let S be as in the proof of Theorem 5.1. Then S is the intersection of the 
affine semigroups {x E L n Nn; X i "* 1}, i = 1, ... ,n. We claim that their semi-
group rings are Cohen-Macaulay. Of course, it suffices to consider the case 

E = {x E L n N n ; Xl "* 1}. 
First, it is easily seen that E is a standard affine semigroup with E' = E and 

El = {x E G; Xl ~ 0 and Xl "* 1}, 

Ei={XEG;Xi~O}, iE[2,n]. 
For every nonempty proper subset J of [1, n], set 

GAE):= n Ei \ U Ei· 
ieJ if/.J 



166 N. V. TRUNG AND L. T. HOA 

Then, by Theorem 4.1 and Lemma 4.5, one only needs to show that sup { Xi; 
X E GAE)} = 00 for some i E [1, n] if GAE) =I:- 0. Assume the contrary. Let X be 
an arbitrary element of GAE). By Lemma 4.6, one has Xl = 1. From this it follows 
that 1 E J. Hence Xi =I:- 0 for all i E [1, n] because Xi == 1 modulo 2. Now, consider 
the element Y E L with 

{
o 
ax· 

Yi:= ax; - ar/(rn i - r + ni) 
aXi + a/(rn i - r + n;} 

if i = 1, 
if i E [2, r ], 

if! Eli' i E [r + 1, n], 
if! $. Ii' i E [r + 1, n ] . 

It is not hard to check that for every positive integer p and i E [1, n], X + py E Ei if 
and only if X E Ei. This means that X + my E GAE). Hence Xi + mYi cannot be 
arbitrarily large. Hence Yi ~ O. Thus, Xi < 0 or, equivalently, X $. Ei for all i E [2, n]. 
So one would obtain J = [1, n], a contradiction. 
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