Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Affine semigroups and Cohen-Macaulay rings generated by monomials


Authors: Ngô Viêt Trung and Lê Tuân Hoa
Journal: Trans. Amer. Math. Soc. 298 (1986), 145-167
MSC: Primary 13H10; Secondary 14M05
DOI: https://doi.org/10.1090/S0002-9947-1986-0857437-3
Corrigendum: Trans. Amer. Math. Soc. 305 (1988), 857.
MathSciNet review: 857437
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a criterion for an arbitrary ring generated by monomials to be Cohen-Macaulay in terms of certain numerical and topological properties of the additive semigroup generated by the exponents of the monomials. As a consequence, the Cohen-Macaulayness of such a ring is dependent upon the characteristic of the ground field.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Cooke and R. L. Finney, Homology of cell complexes, Math. Notes, Princeton Univ. Press, 1967. MR 0219059 (36:2142)
  • [2] N. T. Cuong, P. Schenzel and N. V. Trung, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57-73. MR 517641 (80i:13008)
  • [3] S. Goto, On the Macaulayfication of certain Buchsbaum rings, Nagoya Math. J. 80 (1980), 107-116. MR 596526 (81m:13023)
  • [4] S. Goto and Y. Shimoda, On the Rees algebra of Cohen-Macaulay local rings, Commutative Algebra (Analytic Method), Dekker, New York, 1982, pp. 201-231. MR 655805 (84a:13021)
  • [5] S. Goto, N. Suzuki and K. Watanabe, On affine semigroups, Japan. J. Math. 2 (1976), 1-12. MR 0450257 (56:8553)
  • [6] S. Goto and K. Watanabe, On graded rings. II: $ {Z^n}$-graded rings, Tokyo J. Math. 1 (1978), 237-261. MR 519194 (81m:13022)
  • [7] W. Gröbner, Über Veronesesche Varietäten und deren Projektionen, Arch. Math. 16 (1965), 257-264. MR 0183712 (32:1191)
  • [8] A. Grothendieck (noted by R. Hartshorne), Local cohomology, Lecture Notes in Math., vol. 41, Springer-Verlag, Berlin and New York, 1967. MR 0224620 (37:219)
  • [9] B. Grünbaum, Convex polytopes, Wiley, 1967. MR 0226496 (37:2085)
  • [10] T. Hibi, Affine semigroup rings and Hodge algebras. Some recent developments in the theory of commutative rings, Sûrikaisekikenkyûsho Kôkyûroku 484 (1983), 42-51.
  • [11] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318-337. MR 0304376 (46:3511)
  • [12] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math. 13 (1974), 115-178. MR 0347810 (50:311)
  • [13] M. Ishida, Toric embeddings and dualizing complexes, Tôhoku Math. J. 32 (1980), 111-146. MR 567836 (81e:14005)
  • [14] S. Ikeda, The Cohen-Macaulayness of the Rees algebras of local rings, Nagoya Math. J. 89 (1983), 47-63. MR 692342 (84f:13020)
  • [15] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Math. vol. 339, Springer-Verlag, Berlin and New York, 1973. MR 0335518 (49:299)
  • [16] S. Mac Lane, Homology, Springer, 1963. MR 0156879 (28:122)
  • [17] F. S. Macaulay, Algebraic theory of modular systems, Cambridge Tracts in Math., vol. 19, 1916.
  • [18] H. Matsumura, Commutative algebra, Benjamin, 1970. MR 0266911 (42:1813)
  • [19] T. Oda, Torus embeddings and applications, Lecture Notes of Tata Institute, Springer, 1982.
  • [20] G. Reisner, Cohen-Macaulay quotient of polynomial rings, Adv. in Math. 21 (1976), 30-49. MR 0407036 (53:10819)
  • [21] P. Schenzel, On Veronesean embeddings and projections of Veronesean varieties, Arch. Math. 30 (1978), 391-397. MR 0485849 (58:5651)
  • [22] R. Y. Sharp, The Cousin complex for a module over a commutative noetherian ring, Math. Z. 112 (1969), 348-356. MR 0263800 (41:8400)
  • [23] -, Local cohomology and the Cousin complex for a commutative noetherian ring, Math. Z. 112 (1977), 19-22. MR 0442062 (56:450)
  • [24] E. H. Spanier, Algebraic topology, McGraw-Hill, 1966. MR 0210112 (35:1007)
  • [25] R. Stanley, Hilbert functions of graded algebras, Adv. in Math. 28 (1978), 57-73. MR 0485835 (58:5637)
  • [26] R. Stanley, Linear diophantine equations and local cohomology, Invent. Math. 68 (1982), 175-193. MR 666158 (83m:10017)
  • [27] J. Stückrad and W. Vogel, Eine Verallgemeinerung der Cohen-Macaulay-Ringe und Anwendungen auf ein Problem der Multiplizitätstheorie, J. Math. Kyoto Univ. 13 (1973), 513-528. MR 0335504 (49:285)
  • [28] -, Toward a theory of Buchsbaum singularities, Amer. J. Math. 100 (1978), 717-746. MR 509072 (80d:14004)
  • [29] N. V. Trung, Classification of the double projections of Veronese varieties, J. Math. Kyoto Univ. 22 (1982), 567-581. MR 685519 (84d:13017)
  • [30] -, On projections of one-dimensional Veronese varieties, Math. Nachr. 118 (1984), 47-67. MR 773610 (86c:14023)
  • [31] L. T. Hoa, Classification of the triple projections of Veronese varieties, Math. Nachr. (to appear). MR 855954 (87i:14041)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13H10, 14M05

Retrieve articles in all journals with MSC: 13H10, 14M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0857437-3
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society