DENSE IMBEDDING OF TEST FUNCTIONS
IN CERTAIN FUNCTION SPACES

MICHAEL RENARDY

ABSTRACT. In a recent paper [1], J. U. Kim studies the Cauchy problem for the motion of a Bingham fluid in R^2. He points out that the extension of his results to three dimensions depends on proving the denseness of C^∞-functions with compact support in certain spaces. In this note, such a result is proved.

Following Kim's notation [1], we define the following spaces:

$$\tilde{F}_p(R^n) = \{ u \in W^{1,2}(R^n) | \nabla u \in (L^p(R^n))^n \},$$
$$F_p(R^n) = \{ u \in (W^{1,2}(R^n))^n | \nabla u \in (L^p(R^n))^{n \times n}, \text{div} u = 0 \},$$
$$G_p(R^n) = \{ u \in (W^{1,2}(R^n))^n | e(u) = \nabla u + (\nabla u)^T \in (L^p(R^n))^{n \times n}, \text{div} u = 0 \},$$
$$S(R^n) = \{ u \in (C^\infty_0(R^n))^n | \text{div} u = 0 \}.$$

According to Kim's Lemma 1.7 [1], $F_p = G_p$ for $1 < p < \infty$. The results, which will be presented in this paper, are the following.

Theorem 1. Let n be arbitrary and $1 \leq p < \infty$. Then $C^\infty_0(R^n)$ is dense in $\tilde{F}_p(R^n)$.

Theorem 2. Let $n = 2$ or $n = 3$ and $1 \leq p < \infty$. Then $S(R^n)$ is dense in $F_p(R^n)$ and $G_p(R^n)$.

We remark that the case $p = 2$ of Theorem 2 is well known, even in the context of general domains (see, for example, Heywood [2]). The proofs of both theorems will make use of the following lemma.

Lemma. For $x \in R^n$, let

$$\phi_N(x) = \begin{cases} (N^n\Omega_n)^{-1} & \text{if } |x| \leq N, \\ 0 & \text{if } |x| > N, \end{cases}$$

where Ω_n denotes the volume of the unit ball in R^n. Let $1 \leq r < \infty$ and $v \in L^r(R^n)$; if $r = 1$, assume in addition that $\int_{R^n} v = 0$. Then $\phi_N * v \to 0$ in $L^r(R^n)$ as $N \to \infty$.

Received by the editors November 22, 1985.

1980 Mathematics Subject Classification. Primary 46E35.

Key words and phrases. Sobolev spaces, approximation by test functions.

1 The author was sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by the National Science Foundation under Grants No. MCS-8215064 and DMS-8451761.

©1986 American Mathematical Society

0002-9947/86 $1.00 + .25 per page
Proof of the Lemma. Since \(\|\phi_N\|_{L^1} = 1 \), we have \(\|\phi_N \cdot v\|_{L'} \leq \|v\|_{L'} \), and hence it suffices to show that \(\phi_N \cdot v \to 0 \) for \(v \) in a dense subset of \(L' \). If \(r > 1 \), take \(v \in L^1 \cap L' \). Then \(\|\phi_N \cdot v\|_{L'} \leq \|\phi_N\|_{L'}\|v\|_{L}, \) which tends to zero as \(N \to \infty \). For \(r = 1 \), let \(v \) have compact support, contained in, say, \(\{|x| \leq R\} \), and assume \(\int_{R^n} v = 0 \). Then

\[
\|\phi_N \cdot v\|_{L'} = \int_{R^n} \left| \int_{R^n} \phi_N(x - y)v(y) \, dy \right| \, dx \\
eq \int_{-R \leq |x| \leq N + R} \left| \int_{|y| \leq R} \phi_N(x - y)v(y) \, dy \right| \, dx \\
\leq \int_{-R \leq |x| \leq N + R} \left| \phi_N(x - y) \right| \left| v(y) \right| \, dy \, dx \\
\leq \int_{-2R \leq |z| \leq N} \left| \phi_N(z) \right| \, dz \cdot \int_{|y| \leq R} \left| v(y) \right| \, dy.
\]

This tends to zero as \(N \to \infty \).

Proof of Theorem 1. Clearly it suffices to show that functions of compact support are dense, \(C^\infty \)-regularity can easily be achieved by using a mollifier. If we know that \(u \in L^p(R^n) \) or even that \(u \in L^{p+\varepsilon}(R^n) \) for small enough \(\varepsilon > 0 \), then we can use the standard cut-off procedure to approximate \(u \) by functions of compact support, i.e., if we set \(u_m(x) = u(x)\psi_m(x) \), where, for example,

\[
\psi_m(x) = \begin{cases}
1 & \text{if } |x| \leq m, \\
2 - |x|/m & \text{if } m \leq |x| \leq 2m, \\
0 & \text{if } |x| \geq 2m,
\end{cases}
\]

then it is easy to show that \(u_m \to u \) in \(\tilde{F}_p \). Therefore, it suffices to show that \(\tilde{F}_p \cap L^{p+\varepsilon} \) is dense in \(\tilde{F}_p \). If \(p > 2 \), then the Sobolev imbedding theorem can be used to show that \(\tilde{F}_p \subset L^p \), and there is nothing left to prove.

For \(p < 2 \), let \(\phi_N \) be as in the lemma above. For \(u \in \tilde{F}_p \), let \(u_N = u - \phi_N \cdot u \). We have \(\nabla u_N = \nabla u - \phi_N \cdot \nabla u \), and, if \(p = 1 \), then \(\int_{R^n} \nabla u = 0 \), since \(u \in L^2 \). Therefore, the lemma implies that \(u_N \to u \) as \(N \to \infty \) in the norm of \(\tilde{F}_p \). It is therefore enough to show that \(u_N \) lies in \(L^{p+\varepsilon} \) for small \(\varepsilon > 0 \). Let \(g \) denote the fundamental solution for Laplace’s equation,

\[
g(x) = \begin{cases}
|x|^{2-n}/\omega_n(n-2) & \text{if } n \geq 3, \\
\ln|x|/2\pi & \text{if } n = 2,
\end{cases}
\]

where \(\omega_n \) denotes the surface measure of the unit sphere in \(R^n \). In any dimension, \(g \) and its first derivatives are in \(L^{1+\delta}_{\text{loc}} \) for sufficiently small \(\delta > 0 \). We want to consider the behavior of \(g - \phi_N \cdot g \) at infinity. We have

\[
g(x) - \phi_N \cdot g(x) = g(x) - \int_{|y-x|<N} \frac{g(y)}{N^n\Omega_n} \, dy.
\]
By expanding the integrand in a Taylor series about \(x \), we find that this can be bounded by a constant times

\[
N^2 \max_{|y-x| < N} \max_{i,j} \left| \frac{\partial^2 g(y)}{\partial x_i \partial x_j} \right|
\]

Since second derivatives of \(g \) decay like \(|x|^{-n} \) at infinity, it follows that \(g - \phi_N \ast g \) is in \(L^{1+\delta} \) at infinity for any positive \(\delta \), and so are derivatives of \(g \) by the same argument. Hence we conclude that, for small enough \(\delta > 0 \), \(g - \phi_N \ast g \) lies in \(L^{1+\delta} \).

It follows that \(\omega_N = g \ast \nabla u_N = (g - \phi_N \ast g) \ast \nabla u \) lies in \(L^{p+\varepsilon} \) for small positive \(\varepsilon \), and so do its first derivatives. Since \(\text{div} \omega_N = u_N \), this completes the proof.

Proof of Theorem 2. For \(p > 1 \), the arguments used by Kim [1] show that Theorem 2 follows from Theorem 1. We may hence concentrate on the case \(p = 1 \).

For \(u \in F_1 \) or \(G_1 \), let \(u_N = u - \phi_N \ast u \) with \(\phi_N \) as before. As in the proof of Theorem 1, it can be shown that \(u_N \to u \) in \(F_1 \) or \(G_1 \), respectively. Moreover, let \(a_N = g \ast \text{curl} u_N = (g - \phi_N \ast g) \ast \text{curl} u \). The convolution \(g \ast \text{curl} u_N \) makes sense because \(G_1 \) and \(F_1 \) are contained in \(F_p \) for \(1 < p < 2 \), hence the same argument as in the proof of Theorem 1 shows that \(\text{curl} u_N \) as well as \(u_N \) are in \(L^p \) for \(p \in (1, 2] \).

Moreover, \(g \) is integrable at the origin, and its derivative has some power that is integrable at infinity. We can thus decompose \(g \) in the form \(g = g_1 + g_2 \), where \(g_1 \in L^1 \) and \(\nabla g_2 \in L^q \) for some \(q < \infty \). Clearly \(g_1 \ast \text{curl} u_N \) is defined, and \(g_2 \ast \text{curl} u_N \) can be defined by transferring the derivative onto \(g_2 \). We have \(\Delta a_N = \text{curl} u_N \) and \(\text{curl} a_N = g \ast \text{curl} \text{curl} u_N = g \ast (-\Delta u_N) = -u_N \). Since \(G_1 \) and \(F_1 \) are contained in \(F_p \), for every \(p \in (1, 2] \), \(\text{curl} u \) lies in \(L^{1+\varepsilon} \) for \(0 < \varepsilon < 1 \), and we can conclude as in the proof of Theorem 1 that

\[
a_N = (g - \phi_N \ast g) \ast \text{curl} u \in L^{1+\varepsilon}.
\]

Since \(\Delta a_N \) is also in \(L^{1+\varepsilon} \), it follows that \(a_N \in W^{2, 1+\varepsilon} \).

It thus remains to show that every \(u \in G_1 \) or \(F_1 \) which has the form \(u = \text{curl} a \) with \(a \in W^{2, 1+\varepsilon} \) can be approximated by functions with compact support. This can easily be achieved by multiplying \(a \) with a suitable cut-off function.

References