Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Euler characteristic as an obstruction to compact Lie group actions


Author: Volker Hauschild
Journal: Trans. Amer. Math. Soc. 298 (1986), 549-578
MSC: Primary 57S25; Secondary 55P62, 57R91
DOI: https://doi.org/10.1090/S0002-9947-1986-0860380-7
MathSciNet review: 860380
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Actions of compact Lie groups on spaces $ X$ with $ {H^{\ast}}(X,{\mathbf{Q}}) \cong {\mathbf{Q}}[{x_1}, \ldots ,{x_n}]/{I_0}$, $ Q \in {I_0}$ a definite quadratic form, $ \deg {x_i} = 2$, are considered. It is shown that the existence of an effective action of a compact Lie group $ G$ on such an $ X$ implies $ \chi (X) \equiv O(\vert WG\vert)$, where $ \chi (X)$ is the Euler characteristic of $ X$ and $ \vert WG\vert$ means the order of the Weyl group of $ G$. Moreover the diverse symmetry degrees of such spaces are estimated in terms of simple cohomological data. As an application it is shown that the symmetry degree $ {N_t}(G/T)$ is equal to $ \dim G$ if $ G$ is a compact connected Lie group and $ T \subset G$ its maximal torus. Effective actions of compact connected Lie groups $ K$ on $ G/T$ with $ \dim K = \dim G$ are completely classified.


References [Enhancements On Off] (What's this?)

  • [1] A. Borel, Topics in the homology theory of fiber bundles, Lectures Notes in Math., vol. 36, Springer-Verlag, Berlin and New York, 1967. MR 0221507 (36:4559)
  • [2] T. tom Dieck, Lokalisierung äquivarianter Kohomologietheorien, Math. Zeit. 121 (1971) 253-262. MR 0288756 (44:5952)
  • [3] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Amer. Math. Soc. Transl. (2) 6 (1957), 111-244.
  • [4] -, The maximal subgroups of the classical groups, Amer. Math. Soc. Transl. (2) 6 (1957), 245-378.
  • [5] J. B. Friedländer and S. Halperin, An arithmetic characterization of the rational homotopy groups of certain spaces, Invent. Math. 53 (1979), 117-133. MR 560410 (81f:55006b)
  • [6] S. Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977), 173-199. MR 0461508 (57:1493)
  • [7] A. Hattori and T. Yoshida, Lifting compact group actions in fiber bundles, Japan J. Math. 2 (1976), 13-25. MR 0461538 (57:1523)
  • [8] V. Hauschild, Compact Lie group actions with isotropy subgroups of maximal rank, Manuscripta Math. 34 (1981), 355-379. MR 620457 (82k:57027)
  • [9] -, Deformationen graduierter artinscher Algebrèn in der Kohomologietheorie von Transformationsgruppen, Habilitationsschrift, Konstanz, 1984.
  • [10] -, Actions of compact Lie groups on homogeneous spaces, Math. Z. 189 (1985), 475-486. MR 786278 (86g:57028)
  • [11] K. Hokama and S. Kono, On the fixed point set of $ {S^1}$-actions on the complex flag manifolds, Math. J. Okayama Univ. 20 (1978), 1-16. MR 0501043 (58:18507)
  • [12] W. Y. Hsiang, Cohomology theory of topological transformation groups, Ergeb. Math. Grenzgeb. Band 85, Springer-Verlag Berlin and New York, 1975. MR 0423384 (54:11363)
  • [13] T. Y. Lam, The algebraic theory of quadratic forms, Benjamin/Cummings, Reading, Mass., 1973. MR 0396410 (53:277)
  • [14] H. Matsumura, Commutative algebra, Benjamin, New York, 1970. MR 0266911 (42:1813)
  • [15] V. Puppe, On a conjecture of Bredon, Manuscripta Math. 12 (1974), 11-16. MR 0346778 (49:11502)
  • [16] -, Deformations of algebras and cohomology of fixed point sets, Manuscripta Math. 30 (1979), 119-136. MR 553725 (81e:57038)
  • [17] P. Deligne, Ph. Griffiths, and J. Morgan, Real homotopy of Kähler manifolds, Invent. Math. 29 (1979), 245-274.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57S25, 55P62, 57R91

Retrieve articles in all journals with MSC: 57S25, 55P62, 57R91


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0860380-7
Keywords: Topological transformation groups, cohomology theory of topological transformation groups, symmetry degree, homogeneous spaces, rational homotopy groups, spaces of $ F$-type
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society