Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Pontryagin maximum principle from dynamic programming and viscosity solutions to first-order partial differential equations


Authors: Emmanuel Nicholas Barron and Robert Jensen
Journal: Trans. Amer. Math. Soc. 298 (1986), 635-641
MSC: Primary 49C20; Secondary 35F20, 49B10
DOI: https://doi.org/10.1090/S0002-9947-1986-0860384-4
MathSciNet review: 860384
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the Pontryagin Maximum Principle for the Lagrange problem of optimal control using the fact that the value function of the problem is the viscosity solution of the associated Hamilton-Jacobi-Bellman equation. The proof here makes rigorous the formal proof of Pontryagin's principle known for at least three decades.


References [Enhancements On Off] (What's this?)

  • [1] L. D. Berkovitz, Optimal control theory, Applied Mathematical Sciences No. 12, Springer-Verlag, Berlin and New York, 1974. MR 0372707 (51:8914)
  • [2] L. Cesari, Optimization theory and applications: Problems with ordinary differential equations, Applications of Mathematics No. 17, Springer-Verlag, Berlin and New York, 1983. MR 688142 (85c:49001)
  • [3] M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42. MR 690039 (85g:35029)
  • [4] M. G. Crandall, L. C. Evans, and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), 487-502. MR 732102 (86a:35031)
  • [5] E. B. Lee and L. Markus, Foundations of optimal control theory, Wiley, New York, 1967. MR 0220537 (36:3596)
  • [6] P. L. Lions, Generalized solutions of Hamilton-Jacobi equations, Pitman, London, 1982. MR 667669 (84a:49038)
  • [7] L. S. Pontryagin, et al., The mathematical theory of optimal processes, Interscience, New York, 1962.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49C20, 35F20, 49B10

Retrieve articles in all journals with MSC: 49C20, 35F20, 49B10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0860384-4
Keywords: Pontryagin Maximum Principle, optimal control, viscosity solutions, first-order partial differential equations, dynamic programming
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society