COMPLETELY REDUCIBLE OPERATORS
THAT COMMUTE WITH COMPACT OPERATORS

SHLOMO ROSENOER

ABSTRACT. It is shown that if T is a completely reducible operator on a
Banach space and $TK = KT$, where K is an injective compact operator with
a dense range, then T is a scalar type spectral operator. Other related results
are also obtained.

Let \mathcal{A} be an algebra of bounded linear operators on a Banach space X. lat
\mathcal{A} is the lattice of (closed) invariant subspaces of \mathcal{A}. We say that \mathcal{A} is completely
reducible if for every $M \in \text{lat} \mathcal{A}$ there is $N \in \text{lat} \mathcal{A}$ with $M + N = X$ (that is,
$M \cap N = 0$ and the algebraic sum $M + N$ coincides with X). An operator T
is completely reducible if the algebra generated by T is. It is unknown whether a
weakly closed unital completely reducible algebra must be reflexive; that is, must
contain every operator which leaves invariant its invariant subspaces. Some partial
solutions of this problem can be found in [1, 6, 7].

In this paper we show that every completely reducible operator commuting with
an injective compact operator with a dense range is a scalar type spectral operator.
In particular, the weakly closed unital algebra generated by such an operator must
be reflexive. This result seems to be unknown even for operators on a Hilbert space.
Also, we show that every compact completely reducible operator must be a scalar
type spectral operator. This answers a question raised by E. Azoff and A. Lubin
(see the last page of [1]) and, independently, by V. Lomonosov. Finally, our result
generalizes the results of Loginov and Šul'man [2] and Rosenthal [5] on reductive
Hilbert space operators that commute with compact operators.

The following theorem is the central result of the author's paper [4], where it
was stated in a slightly different form:

\textbf{THEOREM 1.} Let \mathcal{A} be a commutative operator algebra on a Banach space X. If
the commutant of \mathcal{A} is completely reducible and the ranges of compact operators
in \mathcal{A} span X, then every operator in \mathcal{A} is a scalar type spectral operator. If, in
addition, \mathcal{A} is a weakly closed unital completely reducible algebra, then \mathcal{A} is gener-
ated, as a uniformly closed algebra, by a complete totally atomic Boolean algebra
of projections. Moreover, \mathcal{A} is reflexive and admits spectral synthesis (i.e., every
invariant subspace of \mathcal{A} is spanned by its one-dimensional invariant subspaces).

Thus, in order to prove the result described above, it suffices to show that if
\mathcal{A} is a commutative completely reducible algebra which has enough hyperinvariant
subspaces, then the commutant of \mathcal{A} is also completely reducible. This will be done
in Theorem 8 below. The above result then follows easily, a sufficient supply of

Received by the editors September 14, 1981.
1980 \textit{Mathematics Subject Classification} (1985 Revision). Primary 47B40.

©1987 American Mathematical Society
0002-9947/87 $1.00 + .25 per page
hyperinvariant subspaces being provided by Lomonsov's theorem. It can be shown, by a slight variation of the proof of Theorem 8, that the word "hyperinvariant" in its statement can be replaced with "invariant."

Let us introduce some definitions and notation. For Banach spaces X and Y, $\mathcal{L}(X,Y)$ denotes the collection of all bounded linear operators from X to Y; $\mathcal{L}(X,X)$ is denoted by $\mathcal{L}(X)$. X^* means the conjugate space of the Banach space X. For $M \subseteq X$, M^\perp is an annihilator of M in X^*. An operator E in $\mathcal{L}(X)$ is a projection if $E^2 = E$. If E and F are projections, we write $E \leq F$ provided $EF = FE = E$. Clearly, $E \leq F$ if and only if $E(X) \subseteq F(X)$ and $\text{Ker } E \supseteq \text{Ker } F$. If E is a projection, we write E^\perp for $I - E$. If A is a subalgebra of $\mathcal{L}(X)$, then A' denotes the commutant of A; that is, the set of all operators in $\mathcal{L}(X)$ that commute with every operator in A. Hyperinvariant subspaces of A are those invariant for A'. We will write $\mathcal{P}(A)$ for the family of all projections in A', and $\mathcal{P}_0(A)$ for the set of those projections in $\mathcal{P}(A)$ whose range is hyperinvariant for A. Finally, for E in $\mathcal{P}(A)$, we define $\text{int}_E A$ as the set of all $T \in \mathcal{L}(E^\perp(X), E(X))$ such that

$$EAET = TEE^\perp$$

or, equivalently,

$$(A|E(X))(T) = T(A|E^\perp(X))$$

for each $A \in A$.

Clearly, an operator algebra A is completely reducible if and only if for every M in $\text{lat } A$ there is a projection in $\mathcal{P}(A)$ with range M. Note also that for A completely reducible and M in $\text{lat } A$, the restriction of A to M, $A|M$, is also completely reducible.

We shall need some very elementary lemmas. The first is well known.

Lemma 2. Let X be a Banach space and let X_1 and X_2 be subspaces of X with $X_1 + X_2 = X$. Then X is isomorphic to the exterior direct sum $X_1 \oplus X_2$ defined as a vector space of ordered pairs (x_1, x_2), $x_i \in X_i$, endowed with the norm $\|(x_1, x_2)\| = \|x_1\| + \|x_2\|$.

Lemma 3. Let A be a subalgebra of $\mathcal{L}(X)$ and $E \in \mathcal{P}(A)$. Then $E^\perp(X)$ is in $\text{lat } A'$ if and only if $\text{int}_E A = 0$.

Proof. Suppose $E^\perp(X) \in \text{lat } A'$. For each $T \in \text{int}_E A$, ETE^\perp is in A', so that $ETE^\perp = 0$ and $T = 0$. Conversely, for each $B \in A'$, $EBE^\perp E^\perp(X)$ is in $\text{int}_E A$, and $\text{int}_E A = 0$ implies $EBE^\perp = 0$, so that $E^\perp(X)$ is invariant under B.

Lemma 4. Let A be a subalgebra of $\mathcal{L}(X)$ and $F \in \mathcal{P}_0(A)$. Let $X_1 = F(X)$ and $X_2 = \text{Ker } F$.

(i) For each $M \in \text{lat } A'$, $F(M) \in \text{lat } A'$.

(ii) A subspace Y which contains X_1 belongs to $\text{lat } A'$ if and only if $Y = X_1 + Y_1$, where $Y_1 \subseteq X_2$ and $Y_1 \in \text{lat } (A|X_2)'$.

Proof. (i) For each $B \in A'$, $BF(M) \subseteq F(X)$, since $F(X)$ is hyperinvariant, and $BF(M) \subseteq M$, since M is hyperinvariant and $F \in A'$. Hence, $BF(M) \subseteq F(X) \cap M = F(M)$.

(ii) Let $Y \supseteq X_1$ and $Y \in \text{lat } A'$. In particular, Y is invariant under F, so that $Y = X_1 + Y_1$ for some $Y_1 \subseteq X_2$. For each $C \in (A|X_2)'$, $F^\perp CF^\perp \in A'$, and $C(Y_1) = F^\perp CF^\perp(X_1 + Y_1) \subseteq F^\perp(Y) = Y_1$; that is, $Y_1 \in \text{lat } (A|X_2)'$. Conversely,
if \(Y_1 \in \text{lat}(\mathcal{A}\mathcal{X}_2)' \) and \(B \in \mathcal{A}' \), then \(F^\perp B F^\perp |X_2 \) is in \((\mathcal{A}\mathcal{X}_2)' \) and \(F^\perp B F = 0 \). It follows that \(B(Y) = (FB + F^\perp B F^\perp)(Y) \subseteq X_1 \downarrow Y_1 = Y \).

The following two lemmas will enable us to reduce the proof of the main result to the case when the completely reducible commutative algebra has no nonzero finite-dimensional invariant subspaces.

Lemma 5. Let \(\mathcal{A} \subseteq \mathcal{L}(X) \) be a completely reducible algebra such that the one-dimensional subspaces in \(\text{lat} \mathcal{A} \) span \(X \). Then \(\mathcal{A}' \) is completely reducible.

Proof. Clearly, \(\mathcal{A} \) is commutative. We claim that \(\mathcal{A} \) admits spectral synthesis. Indeed, let \(M \in \text{lat} \mathcal{A} \). Then there exists \(F \in \mathcal{P}(\mathcal{A}) \) such that \(E(X) = M \). Since \(E \) transforms every one-dimensional invariant subspace of \(\mathcal{A} \) into an invariant subspace of \(\mathcal{A} \) of dimension no greater than one, \(E(X) \) is spanned by one-dimensional elements of \(\text{lat} \mathcal{A} \).

Now suppose \(X_1 \in \text{lat} \mathcal{A}' \). Since \(\mathcal{A}' \supseteq \mathcal{A} \), \(X_1 \) is also in \(\mathcal{A} \), and one can find \(X_2 \in \text{lat} \mathcal{A} \) with \(X_1 \downarrow X_2 = X \). We shall show that \(X_2 \) is also in \(\text{lat} \mathcal{A}' \). Suppose not. Denote by \(E \) the projection onto \(X_1 \) along \(X_2 \). Then, by Lemma 3, \(\text{int}_E \mathcal{A} \neq 0 \), and, by our claim above, there exist such \(T \in \text{int}_E \mathcal{A} \) and one-dimensional \(N \in \text{lat}(\mathcal{A}\mathcal{X}_2) \) such that \(M = T(N) \neq 0 \). It is very easy to see that \(M \in \text{lat} \mathcal{A} \) and the algebra \(\mathcal{A}'(M \downarrow N) \) consists only of multiples of the identity. Denote by \(S \) an operator which maps \(M \) into \(N \) and is identically zero on some invariant complement to \(M \downarrow N \). Then \(S \in \mathcal{A}' \), but \(X_1 \) is not invariant for \(S \), a contradiction.

Lemma 6. Let \(\mathcal{A} \subseteq \mathcal{L}(X) \) be a completely reducible algebra. Suppose \(X_1 \) is spanned by all one-dimensional subspaces in \(\text{lat} \mathcal{A} \) and \(X_2 \) is in \(\text{lat} \mathcal{A} \) with \(X_1 \downarrow X_2 = X \). Then both \(X_1 \) and \(X_2 \) are in \(\text{lat} \mathcal{A}' \).

Proof. Obviously, \(X_1 \) lies in \(\text{lat} \mathcal{A}' \). Suppose \(X_2 \) does not. Then, denoting by \(E \) a projection onto \(X_1 \) along \(X_2 \), we conclude that \(\text{int}_E \mathcal{A} \neq 0 \). Choose nonzero \(T \in \text{int}_E \mathcal{A} \). Since \(\text{cl} T(X_2) \in \text{lat}(\mathcal{A}\mathcal{X}_1) \) and, as has been noted in the proof of the previous lemma, \(\mathcal{A}\mathcal{X}_1 \) admits spectral synthesis, we can find a one-dimensional \(P \in \mathcal{P}(\mathcal{A}\mathcal{X}_1) \) such that \(PT \neq 0 \). However, \(PT \in \text{int}_E \mathcal{A} \), so that \(\text{Ker} PT \subset \text{lat}(\mathcal{A}\mathcal{X}_2) \). On the other hand, \(\text{codim} \text{Ker} PT = 1 \) and, since \(\mathcal{A}\mathcal{X}_2 \) is completely reducible, \(\mathcal{A}\mathcal{X}_2 \) has a one-dimensional invariant subspace, which contradicts the definition of \(X_1 \) and therefore completes the proof.

Lemma 7. Suppose \(\mathcal{A} \subseteq \mathcal{L}(X) \) is a commutative completely reducible algebra which has the following property: for every nonzero \(M \in \text{lat} \mathcal{A}' \), there is \(N \in \text{lat} \mathcal{A} \) such that \(N \subset M, N \neq 0, N \neq M \). Let \(M_1, M_2, \ldots, M_n, \ldots \) be an infinite sequence of nonzero subspaces in \(\text{lat} \mathcal{A}' \). Then there exists such an \(F \in \mathcal{P}_0(\mathcal{A}) \) that \(F^\perp (M_1) \neq 0 \) and \(F(M_n) \neq 0 \) for infinitely many \(n \).

Proof. Choose hyperinvariant \(N \subset M_1, N \neq 0, N \neq M_1 \). Since \(\mathcal{A}' \supseteq \mathcal{A} \), \(N \in \text{lat} \mathcal{A} \), and there exists \(P \in \mathcal{P}_0(\mathcal{A}) \) with range \(N \). Now consider two cases.

Case 1. \(P(M_n) \neq 0 \) for only finitely many \(n \).

Then there is an infinite set of positive integers \(J \) such that \(M_n \subset P^\perp (X) \) for all \(n \) in \(J \). Let \(F \) denote a projection of \(\mathcal{P}_0(\mathcal{A}) \) onto a subspace \(\bigvee_{n \in J} M_n \) such that \(F \leq P^\perp \). Then \(F(M_n) = M_n \neq 0 \) for every \(n \in J \) and \(F^\perp (M_1) \supseteq N \neq 0 \).

Case 2. \(P(M_n) \neq 0 \) for infinitely many \(n \).

Then take \(F = P \). Clearly, \(F(M_n) \neq 0 \) for infinitely many \(n \). On the other hand, \(F^\perp (M_1) \neq 0 \), since \(N \neq M_1 \).
Now we are ready for the proof of our main result.

Theorem 8. Let $\mathcal{A} \subseteq \mathcal{L}(X)$ be a commutative completely reducible algebra. Suppose that for every hyperinvariant subspace M of \mathcal{A} of dimension and codimension greater than 1, there exist nontrivial hyperinvariant subspaces of \mathcal{A}, M_1 and M_2, other than M, such that $M_1 \subseteq M \subseteq M_2$. Then \mathcal{A}' is completely reducible.

Proof. Choose X_1 in lat \mathcal{A}'. Since $\mathcal{A}' \supseteq \mathcal{A}$, X_1 is also in lat \mathcal{A} and, since \mathcal{A} is completely reducible, there is in $X_2 \in \text{lat} \mathcal{A}$ such that $X_1 + X_2 = X$. We claim that X_2 is in lat \mathcal{A}' and therefore that X_2 is the unique complement to X_1 in lat \mathcal{A}.

The claim will be established by contradiction; suppose X_2 is not in lat \mathcal{A}'. Denote by E the projection onto X_1 along X_2. The proof will be divided into three parts. In the first part, we shall construct two infinite sequences of pairwise orthogonal projections, $\{E_n\}_{n=1}^{\infty}$ in $(\mathcal{A}|X_2)'$ and $\{F_n\}_{n=1}^{\infty}$ in $(\mathcal{A}|X_1)' = \mathcal{A}'|X_1$, and a sequence $\{T_n\}_{n=1}^{\infty}$ in int$_E \mathcal{A}$ such that $E_nT_nF_n \neq 0$ for all n.

Note that for $T \in \text{int}_E \mathcal{A}$, $B \in \mathcal{A}'|X_1$, and $C \in (\mathcal{A}|X_2)'$, BTC $\in \text{int}_E \mathcal{A}$. For an arbitrary projection G in $\mathcal{L}(X_2)$ let $M(G)$ denote the subspace of X_1 spanned by all $TG(X_2)$ with $T \in \text{int}_E \mathcal{A}$. Clearly, $M(G)$ is always in lat($\mathcal{A}'|X_1$).

Now denote by Y the intersection of the kernels of all operators in int$_E \mathcal{A}$. By our assumption that X_2 is not in lat \mathcal{A}' and Lemma 3, it follows that $Y \neq X_2$. On the other hand, Y lies in $\text{lat}(\mathcal{A}|X_2)'$ and, by Lemma 4(ii), $X_1 + Y$ lies in lat \mathcal{A}'. Let Q be a projection in $\mathcal{P}(\mathcal{A}|X_2)$ onto a subspace which is complementary to Y in X_2. By hypothesis, $X_1 + Y$ is contained in some larger nontrivial hyperinvariant subspace of \mathcal{A}. By Lemma 4(ii), this larger subspace has the form $X_1 + Y + E_1(X_2)$ for some nonzero $E_1 \in \mathcal{P}(\mathcal{A}|X_2)$, $E_1 \leq Q$, $E_1 \neq Q$. Repeating the same argument, one can find nonzero $E_2 \in \mathcal{P}(\mathcal{A}|X_2)$ with $E_2 \leq Q - E_1$, $E_2 \neq Q - E_1$. Proceeding by induction, we get an infinite sequence $\{E_n\}_{n=1}^{\infty}$ of pairwise orthogonal nonzero projections in $\mathcal{P}(\mathcal{A}|X_2)$ with $E_n \leq Q$ for all n. It follows from the definition of Q that $M(E_n) \neq 0$ for all n.

Now Lemma 7 provides $G_1 \in \mathcal{P}_0(\mathcal{A}|X_1)$ such that $G_1^\perp M(E_1) \neq 0$ and $G_1 M(E_n) \neq 0$ for every n in the infinite set J of positive integers.

Renumber the elements of J_1 by $2, 3, \ldots$. By Lemma 4(i), $G_1 M(E_n) \in \text{lat}(\mathcal{A}|X_1)'$ for $n \geq 2$. Since $$((\mathcal{A}|G_1(X_1))' = \mathcal{A}|G_1(X_1),$$
we may again apply Lemma 7 to the algebra $\mathcal{A}|G_1(X_1)$ and a sequence $G_1 M(E_2)$, $G_1 M(E_3), \ldots$ of its hyperinvariant subspaces. As a result, we obtain $G_2 \in \mathcal{P}_0(\mathcal{A}|X_1)$ such that $G_2 \leq G_1$, $(G_1 - G_2)G_1 M(E_2) = (G_1 - G_2)M(E_2) \neq 0$, and $G_2 G_1 M(E_n) = G_2 M(E_n) \neq 0$ for every n from an infinite subset J_2 of J_1.

Proceeding by induction (renumbering the elements of J_n by $n + 1, n + 2, \ldots$), we get a sequence $I = G_0 \geq G_1 \geq G_2 \geq \cdots \geq G_n \geq \cdots$, where $G_n \in \mathcal{P}_0(\mathcal{A}|X_1)$ and $$(G_{n-1} - G_n)M(E_n) \neq 0, \quad n = 1, 2, \ldots.$$ Let $F_n = G_{n-1} - G_n$, $n = 1, 2, \ldots$. The F_n's are pairwise orthogonal projections in $\mathcal{P}(\mathcal{A}|X_1)$, and $F_n M(E_n) \neq 0$ for $n = 1, 2, \ldots$. Finally, from the definition of $M(E_n)$, it follows that there is a sequence $\{T_n\}_{n=1}^{\infty}$ in int$_E \mathcal{A}$ such that $F_n T_n E_n \neq 0$ for all n.

In the second part of the proof we will construct a closed unbounded linear transformation T defined on the linear manifold $D \subseteq X_1$, with range in X_2, such

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
that its graph \(\{ Tx + x, \ x \in \mathcal{D} \} \) is invariant under \(\mathcal{A} \). For this, define an operator
\[T_0 \in \mathcal{L}(X_2, X_1) \]
as follows:
\[T_0 = \sum_{n=1}^{\infty} 2^{-n} \| F_n T_n E_n \|^{-1} F_n T_n E_n, \]
where the series converges in the sense of the norm in \(\mathcal{L}(X_2, X_1) \). It is easy to see
that \(T_0 \in \text{int} \mathcal{A} \). Now let \(L = \bigcap_{n=1}^{\infty} \text{Ker } F_n \). Then \(L \in \text{lat}(\mathcal{A}|X_1) \); let \(N \) be in
\(\text{lat}(\mathcal{A}|X_1) \) with \(L \perp N = X_1 \). Denote by \(P \) the projection onto \(N \) along \(L \). Let us observe that for every \(n \) the operator \(P F_n | F_n(X_1) \) is injective; it follows that
\(P F_n T_n E_n \neq 0 \) for \(n \geq 1 \). Now define \(S \in (\mathcal{A}|X_2)' \) as follows:
\[S = \sum_{n=1}^{\infty} 2^{-2n} \| P F_n T_n E_n \| \| F_n T_n E_n \|^{-1} \| E_n \|^{-1} E_n \]
(again, the series is convergent in the sense of the norm).

We claim that the subspace
\[M = \text{cl}\{(PT_0 x, S x), \ x \in X_2 \} \subseteq X_1 \oplus X_2 \]
is a graph of some linear transformation \(T: \mathcal{D} \to X_1, \mathcal{D} \subseteq X_2 \).

Indeed, the conjugate space to \(X_1 \oplus X_2 \) is a linear space of vectors \((x_1^*, x_2^*)\),
\(x_i^* \in X_i^* \), endowed with the norm
\[\| (x_1^*, x_2^*) \| = \text{sup}(\| x_1^* \|, \| x_2^* \|). \]
It is easy to see that \((x_1^*, x_2^*) \in M^\perp \) if and only if
\[T_0^* P^* x_1^* + S^* x_2^* = 0. \]
Note that, by the definition of \(L \),
\[\text{weak}^* \text{cl} \left(\bigvee_{n=1}^{\infty} F_n^* (X_1^*) \right) = \text{weak}^* \text{cl} \left(\bigvee_{n=1}^{\infty} (\text{Ker } F_n)^\perp \right) \]
\[= \left(\bigcap_{n=1}^{\infty} \text{Ker } F_n \right)^\perp = L^\perp. \]
Note also that \(L^\perp = P^* (X_1^*), \ N^\perp = \text{Ker } P^*, \) and \(L^\perp \perp N^\perp = X_1^* \). Let
\[\mathcal{L} = \bigcup_{n=1}^{\infty} \left(\sum_{i=1}^{n} F_i^* (X_1^*) \right). \]
Clearly, \(\mathcal{L} \) is weak* dense in \(L^\perp \). Now, for \(m \geq 1 \),
\[T_0^* P^* F_m = T_0^* F_m = \left(\sum_{n=1}^{\infty} 2^{-n} \| F_n T_n E_n \|^{-1} E_n^* T_n^* F_n^* \right) F_m^* \]
\[= 2^{-m} \| F_m T_m E_m \|^{-1} E_m^* T_m^* F_m^*. \]
Similarly, we conclude that \(E_m^* (X_2^*) \) is contained in the range of \(S^* \) for \(m \geq 1 \). It follows that for each \(x_i^* \in \mathcal{L} + N^\perp \) there exists \(x_2^* \in X_2^* \) such that
\(T_0^* P^* x_1^* + S^* x_2^* = 0 \) (if \(x_1^* \in N^\perp \), then \(P^* x_1^* = 0 \) and we can take \(x_2^* = 0 \)), or \((x_1^*, x_2^*) \in M^\perp \). Now suppose \((x, 0) \in M \) for some \(x \in X_1 \). Then, for each \(x_i^* \in \mathcal{L} + N^\perp, \ x_1^* (x) = 0 \), and, since \(\mathcal{L} + N^\perp \) is weak* dense in \(X_1^*, \ x = 0 \). This proves our claim.
Now we shall show that \(T \) is unbounded. Indeed, for every \(m \geq 1 \), \(E_m(X_2) \subseteq S(X_2) \) and therefore \(E_m(X_2) \subseteq D \). Furthermore, \(TSE_m = PT_0E_m \), or
\[
T(2^{-2m} \| PF_m T_m E_m \| \| F_m T_m E_m \|^{-1} \| E_m \|^{-1}) E_m
= 2^{-m} \| F_m T_m E_m \|^{-1} PF_m T_m E_m.
\]
Since \(PF_m T_m E_m \neq 0 \),
\[
T E_m = 2^m \| E_m \| \| PF_m T_m E_m \|^{-1} PF_m T_m E_m.
\]
Hence, \(\| T E_m \| = 2^m \| E_m \| \), which proves that \(T \) is unbounded.

Now let \(M_0 \) be the closure of \(\{ PT_0x + Sx, \ x \in X_2 \} \) in \(X \). Lemma 2 allows us to identify \(M_0 \) with \(M \). That is, we may suppose that \(M_0 \cap X_1 = 0 \) and \((M_0 + X_1) \cap X_2 = D \). For each \(A \) in \(\mathcal{A} \), \(A = EAE + E^\perp AE^\perp \); it follows, since \(PT_0 \in \text{int} \mathcal{A} \) and \(S \in (\mathcal{A}|X_2)' \), that for \(x \in X_2 \),
\[
A(PT_0x + Sx) = (EAE + E^\perp AE^\perp)(PT_0x + Sx)
= EAEPT_0x + E^\perp AE^\perp x = PT_0E^\perp AE^\perp x + SE^\perp AE^\perp x,
\]
which shows that \(M_0 \in \text{lat} \mathcal{A} \). This ends the second part of the proof.

In the last part of the proof we obtain a contradiction. To do this, it would suffice to refer to a simple result of Fong [1], but we prefer to give a direct proof.

Since \(M_0 \in \text{lat} \mathcal{A} \) and \(\mathcal{A} \) is completely reducible, one can find \(M_1 \in \text{lat} \mathcal{A} \) such that \(M_0 \cap M_1 = X \). Let \(E_0 \) denote the projection onto \(M_0 \) along \(M_1 \). Then \(E \in \mathcal{A}' \) and hence \(X_1 \) is invariant under \(E_0 \). This implies that
\[
X_1 = X_1 \cap M_0 \cap X_1 \cap M_1.
\]
However, as we have seen, \(X_1 \cap M_0 = 0 \); that means \(X_1 \subseteq M_1 \). From the fact that \(M_0 \cap M_1 = X \) and Lemma 2, it follows that the manifold \(M_0 + X_1 \) is closed. Then \(D = (M_0 + X_1) \cap X_2 \) is also closed. But \(D \) is the domain of definition for a closed unbounded transformation \(T \), and, by the Closed Graph Theorem, cannot be closed. This contradiction completes the proof of the theorem.

THEOREM 9. Let \(\mathcal{A} \subseteq \mathcal{L}(X) \) be a commutative unital weakly closed completely reducible algebra. Suppose that the intersection of the kernels of all compact operators in \(\mathcal{A}' \) is zero and the subspace spanned by ranges of all compact operators in \(\mathcal{A}' \) is \(X \). Then \(\mathcal{A} \) is generated, as a uniformly closed algebra, by a complete bounded totally atomic Boolean algebra of projections; in particular, \(\mathcal{A} \) is an algebra of scalar type spectral operators. Furthermore, \(\mathcal{A} \) is reflexive and admits spectral synthesis.

PROOF. Let \(X_1 \) denote the subspace spanned by all one-dimensional subspaces in \(\text{lat} \mathcal{A} \), and let \(X_2 \) be a complement to \(X_1 \) in \(\text{lat} \mathcal{A} \). By Lemma 6, \(X_1 \) and \(X_2 \) are in \(\text{lat} \mathcal{A}' \). We shall show that for \(\mathcal{A}|X_2 \) the conditions of the previous theorem are satisfied. Denote by \(\mathcal{C} \) the family of all compact operators in \((\mathcal{A}|X_2)' \). Clearly, intersections of the kernels of all operators in \(\mathcal{C} \) is zero, and the subspace spanned by all their ranges is \(X_2 \). Let \(M \) be a nonzero subspace in \(\text{lat} \mathcal{A}|X_2 \) and \(E \) be in \(P_0(\mathcal{A}|X_2) \) with \(E(X_2) = M \). Then there is \(K_1 \in \mathcal{C} \) such that \(K_1|M \neq 0 \) and (note that \(M \) is infinite-dimensional), by Lomonosov's theorem [3], there is a nonzero \(M_1 \subseteq M \) such that \(M_1 \in \text{lat} \mathcal{A}|X_2 \) and \(M_1 \neq M \). On the other hand, there exists \(K_2 \in \mathcal{C} \) such that \(E^\perp K_2 E^\perp \neq 0 \), for otherwise \(E^\perp KE = E^\perp KE^\perp = 0 \) for each \(K \) in \(\mathcal{C} \), hence \(K = EK \) and \(K(X_2) \subseteq E(X_2) \), which contradicts our
hypothesis. Again, by Lomonosov's theorem, the algebra $A|E^+(X_2)$ has a nontrivial hyperinvariant subspace, and now Lemma 4(iii) implies that $A|X_2$ has a nontrivial hyperinvariant subspace M_2 strictly containing M. So the conditions of Theorem 8 are satisfied for $A|X_2$.

Choose a subspace in $\text{lat } A'$ Clearly, it can be written as $M \oplus N$, where $M \subseteq X_1$ and $N \subseteq X_2$. By Lemma 5, there exists M_1 in $\text{lat}(A|X_1)'$ such that $M \oplus M_1 = X_1$, and, by Theorem 8, we can find $N_1 \in \text{lat}(A|X_2)'$ such that $N \oplus N_1 = X_2$. But then $M_1 \oplus N_1$ lies in $\text{lat } A'$ and $(M \oplus N) \oplus (M_1 \oplus N_1) = X$. It follows that A' is completely reducible. Now, to conclude the proof of the theorem, it suffices to apply Theorem 1.

The following corollary follows immediately from Theorem 9.

Corollary 10. Let $T \in \mathcal{L}(X)$ be a completely reducible operator. If $TK = KT$, where K is an injective compact operator such that $\text{cl } K(X) = X$, then T is a scalar type spectral operator, and spectral synthesis holds for T.

Corollary 11. Let $A \subseteq \mathcal{L}(X)$ be a commutative unital weakly closed completely reducible algebra. If the intersection of the kernels of all the compact operators in A is zero, or if the ranges of all the compact operators in A span X, then the conclusions of Theorem 9 hold for A.

Proof. We shall show that the assumption about the kernels is equivalent to that about the ranges. Then the result would be an immediate consequence of Theorem 9. Let M be intersection of the kernels of all compact operators in A. Clearly, $M \in \text{lat } A$. Let $N \in \text{lat } A$ be such that $M \oplus N = X$. Let N_0 be the subspace spanned by all $K(N)$, where K runs over the set of all compact operators in A. Obviously, $N_0 \in \text{lat } A$ and $N_0 \subseteq N$. Let $N_1 \in \text{lat } A$, $N_0 \oplus N_1 = N$. Then, by the definition of N_0, all the compact operators in A vanish on N_1; that is, $N_1 \subseteq M \cap N = 0$ and $N_0 = N$. On the other hand, the range of every compact operator in A is contained in N. It follows that the subspace spanned by the ranges of the compact operators in A is exactly N. But $M = 0$ implies $N = X$, and vice versa.

To end this paper, we give a characterization of completely reducible compact operators.

Corollary 12. Every compact, completely reducible operator $K \in \mathcal{L}(X)$ is a scalar type spectral operator.

Proof. It suffices to note that $\text{Ker } K \oplus \text{cl } K(X) = X$ [1].

The author is grateful to Victor Sul'man for some helpful discussions.

References

