Concavity of solutions of the porous medium equation

Authors:
Philippe Bénilan and Juan Luis Vázquez

Journal:
Trans. Amer. Math. Soc. **299** (1987), 81-93

MSC:
Primary 35K60; Secondary 76S05

MathSciNet review:
869400

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the problem

**[**D. G. Aronson,**A**]*Regularity properties of flows through porous media: The interface.*, Arch. Rational Mech. Anal.**37**(1970), 1–10. MR**0255996****[**D. C. Aronson and Ph. Benilan,**AB**]*Régularité des solutions de l'équation des milieux poreux dans*, C. R. Acad. Sci. Paris**288**(1979), 103-105.**[**Philippe Bénilan and Michael G. Crandall,**BC**]*The continuous dependence on 𝜙 of solutions of 𝑢_{𝑡}-Δ𝜙(𝑢)=0*, Indiana Univ. Math. J.**30**(1981), no. 2, 161–177. MR**604277**, 10.1512/iumj.1981.30.30014**[**Ph. Bénilan, M. G. Crandall and A. Pazy,**BCP**]*Evolution equations governed by accretive operators*(to appear).**[**Stanley H. Benton Jr.,**BT**]*The Hamilton-Jacobi equation*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1977. A global approach; Mathematics in Science and Engineering, Vol. 131. MR**0442431****[**Luis A. Caffarelli and Avner Friedman,**CF**]*Regularity of the free boundary for the one-dimensional flow of gas in a porous medium*, Amer. J. Math.**101**(1979), no. 6, 1193–1218. MR**548877**, 10.2307/2374136**[**Michael G. Crandall and Pierre-Louis Lions,**CL**]*Viscosity solutions of Hamilton-Jacobi equations*, Trans. Amer. Math. Soc.**277**(1983), no. 1, 1–42. MR**690039**, 10.1090/S0002-9947-1983-0690039-8**[**J. L. Graveleau and P. Jamet,**GJ**]*A finite difference approach to some degenerate nonlinear parabolic equations*, SIAM J. Appl. Math.**20**(1971), 199–223. MR**0290600****[**Barry F. Knerr,**K**]*The porous medium equation in one dimension*, Trans. Amer. Math. Soc.**234**(1977), no. 2, 381–415. MR**0492856**, 10.1090/S0002-9947-1977-0492856-3**[**O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural'ceva,**LSU**]*Linear and quasilinear equation of parabolic type*, Transl. Math. Monos., vol. 23, Amer. Math. Soc., Providence, R.I., 1969.**[**Pierre-Louis Lions,**L**]*Generalized solutions of Hamilton-Jacobi equations*, Research Notes in Mathematics, vol. 69, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR**667669****[**Maura Ughi,**U**]*A degenerate parabolic equation modelling the spread of an epidemic*, Ann. Mat. Pura Appl. (4)**143**(1986), 385–400. MR**859613**, 10.1007/BF01769226**[**Juan Luis Vázquez,**V1**]*Asymptotic behaviour and propagation properties of the one-dimensional flow of gas in a porous medium*, Trans. Amer. Math. Soc.**277**(1983), no. 2, 507–527. MR**694373**, 10.1090/S0002-9947-1983-0694373-7**[**Juan L. Vázquez,**V2**]*The interfaces of one-dimensional flows in porous media*, Trans. Amer. Math. Soc.**285**(1984), no. 2, 717–737. MR**752500**, 10.1090/S0002-9947-1984-0752500-8

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35K60,
76S05

Retrieve articles in all journals with MSC: 35K60, 76S05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0869400-8

Keywords:
Concavity,
flow in porous media,
Trotter-Kato formula,
interfaces,
asymptotic behavior

Article copyright:
© Copyright 1987
American Mathematical Society