The structure of the critical set in the mountain pass theorem

Authors:
Patrizia Pucci and James Serrin

Journal:
Trans. Amer. Math. Soc. **299** (1987), 115-132

MSC:
Primary 58E05; Secondary 49F15

MathSciNet review:
869402

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the critical set generated by the Mountain Pass Theorem of Ambrosetti and Rabinowitz must have a well-defined structure. In particular, if the underlying Banach space is infinite dimensional then either the critical set contains a saddle point of mountain-pass type, or the set of local minima intersects at least *two* components of the set of saddle points. Related conclusions are also established for the finite dimensional case, and when other special conditions are assumed. Throughout the paper, no hypotheses of nondegeneracy are required on the critical set.

**[1]**Antonio Ambrosetti and Paul H. Rabinowitz,*Dual variational methods in critical point theory and applications*, J. Functional Analysis**14**(1973), 349–381. MR**0370183****[2]**David C. Clark,*A variant of the Lusternik-Schnirelman theory*, Indiana Univ. Math. J.**22**(1972/73), 65–74. MR**0296777****[3]**I. Ekeland and H. Hofer,*Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems*, Invent. Math.**81**(1985), no. 1, 155–188. MR**796195**, 10.1007/BF01388776**[4]**Helmut Hofer,*A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem*, J. London Math. Soc. (2)**31**(1985), no. 3, 566–570. MR**812787**, 10.1112/jlms/s2-31.3.566**[5]**L. Nirenberg,*Variational and topological methods in nonlinear problems*, Bull. Amer. Math. Soc. (N.S.)**4**(1981), no. 3, 267–302. MR**609039**, 10.1090/S0273-0979-1981-14888-6**[6]**Patrizia Pucci and James Serrin,*A mountain pass theorem*, J. Differential Equations**60**(1985), no. 1, 142–149. MR**808262**, 10.1016/0022-0396(85)90125-1**[7]**Patrizia Pucci and James Serrin,*Extensions of the mountain pass theorem*, J. Funct. Anal.**59**(1984), no. 2, 185–210. MR**766489**, 10.1016/0022-1236(84)90072-7**[8]**P. H. Rabinowitz,*Variational methods for nonlinear eigenvalue problems*, Eigenvalues of non-linear problems (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1974) Edizioni Cremonese, Rome, 1974, pp. 139–195. MR**0464299****[9]**-,*Some aspects of critical point theory*, Univ. of Wisconsin, MRC Tech. Rep. No. 2465, 1983.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58E05,
49F15

Retrieve articles in all journals with MSC: 58E05, 49F15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1987-0869402-1

Keywords:
Critical point theory,
nonlinear functional analysis

Article copyright:
© Copyright 1987
American Mathematical Society