Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Persistence of form and the value group of reducible cubics


Author: P. D. T. A. Elliott
Journal: Trans. Amer. Math. Soc. 299 (1987), 133-143
MSC: Primary 11N60; Secondary 11D85, 11K65
DOI: https://doi.org/10.1090/S0002-9947-1987-0869403-3
MathSciNet review: 869403
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the values of $ x({x^2} + c)$, $ c \ne 0$, at positive integers, multiplicatively generate the positive rationals. Analogs in rational function fields are obtained.


References [Enhancements On Off] (What's this?)

  • [1] D. A. Burgess, The distribution of quadratic residues and non-residues, Mathematika 4 (1957), 106-112. MR 0093504 (20:28)
  • [2] -, On character sums and primitive roots, Proc. London Math. Soc. 12 (1962), 179-192. MR 0132732 (24:A2569)
  • [3] -, Dirichlet characters and polynomials, Proc. Internat. Conf. in Number Theory (Moscow, 14-18 Sept. 1971), Trudy Mat. Inst. Steklov 132 (1973), 203-205. MR 0401673 (53:5500)
  • [4] P. D. T. A. Elliott, Arithmetic functions and integer products, Grundlehren Math. Wiss., Springer-Verlag, New York and Berlin, 1984. MR 766558 (86j:11095)
  • [5] -, The value distribution of reducible cubics, Canad. Math. Bull. 28 (1986), 328-336. MR 790954 (86h:11028)
  • [6] -, On representing integers as products of integers of a prescribed type, J. Austral. Math. Soc. (Ser. A) 35 (1983), 143-161. MR 704421 (84m:10056)
  • [7] -, On the mean value of $ f(p)$, Proc. London Math. Soc. 21 (1970), 28-96. MR 0266881 (42:1783)
  • [8] R. C. Vaughan, The Hardy-Littlewood method, Cambridge Univ. Press, London, 1981. MR 628618 (84b:10002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11N60, 11D85, 11K65

Retrieve articles in all journals with MSC: 11N60, 11D85, 11K65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0869403-3
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society