COUNTABLY GENERATED DOUGLAS ALGEBRAS

KEIJI IZUCHI

ABSTRACT. Under a certain assumption of f and g in L^∞ which is considered by Sarason, a strong separation theorem is proved. This is available to study a Douglas algebra $[H^\infty, f]$ generated by H^∞ and f. It is proved that (1) ball($B/H^\infty + C$) does not have exposed points for every Douglas algebra B, (2) Sarason's three functions problem is solved affirmatively, (3) some characterization of f for which $[H^\infty, f]$ is singly generated, and (4) the M-ideal conjecture for Douglas algebras is not true.

Let H^∞ be the space of bounded analytic functions on the unit disk. A uniformly closed subalgebra between H^∞ and L^∞ is called a Douglas algebra. By Chang-Marshall's theorem [3, 19], a Douglas algebra is generated by H^∞ and complex conjugates of some inner functions. A Douglas algebra is called singly (countably, respectively) generated if it is generated by H^∞ and a complex conjugate of only one (countably many) inner function(s). In this paper, we investigate a Douglas algebra $[H^\infty, f]$ which is generated by H^∞ and f in L^∞. By Chang-Marshall's theorem, it is easy to see that $[H^\infty, f]$ is countably generated. To study $[H^\infty, f]$, we have to study the behavior of f on $M(L^\infty)$. Let $N(f)$ equal the closure of

$$\bigcup \{\text{supp } \mu_x; x \in M(H^\infty + C) \text{ and } f|\text{supp } \mu_x \not\in H^\infty|\text{supp } \mu_x\};$$

roughly speaking $N(f)$ is a subset of $M(L^\infty)$ on which f is not analytic. Properties of $N(f)$ play important roles in studying Douglas algebras. $N(f)$, especially $N(I)$ where I is an inner function, is studied in [13].

The key theorem (Theorem 2.1 given in §2) is that if either $f|\text{supp } \mu_x$ or $g|\text{supp } \mu_x$ belongs to $H^\infty|\text{supp } \mu_x$ for every $x \in M(H^\infty + C)$ then $N(f) \cap N(g) = \emptyset$. When f and g are inner functions, this fact is already proved in [13]. The above assumption is considered by Sarason [22], and he showed that either $f|Q$ or $g|Q$ belongs to $H^\infty|Q$ for every QC-level set Q under the above assumption. Our theorem with Corollary 2.1 gives more striking separation than Sarason's. Using our separation theorem, we study singly or countably generated Douglas algebras. In [14], the author showed that a Douglas algebra B is singly generated if and only if ball($B/H^\infty + C$) has extreme points. In §3, we shall give also a geometrical characterization of countably generated Douglas algebras. And we shall show that ball($B/H^\infty + C$) does not have exposed points for every Douglas algebra B. In [22, p. 471], Sarason proposed a problem that the above mentioned Sarason theorem is still true for three functions. In §4, we shall give an affirmative answer. In §5, we study a special sequence of QC-level sets which will be called strongly discrete. Using a property of such a sequence, given in Theorem 5.1, we shall prove...
a theorem which is more precise than Gorkin’s given in [8, Theorem 2.1]. In §6, we shall give equivalent conditions on \(f \) for which \([H^\infty, f]\) is singly generated. This answers Marshall’s problem given in [19]. In §7, we shall give a negative answer of the \(M \)-ideal conjecture [18].

1. Preliminaries. Let \(A \) be a uniformly closed subalgebra of \(C(K) \), the space of continuous functions on a compact Hausdorff space \(K \). We denote by \(M(A) \) the maximal ideal space of \(A \) equipped with the weak*-topology and by \(\partial A \) the Shilov boundary for \(A \). For \(f \in C(\partial A) \), ||f|| means the supremum norm of \(f \) and \(\bar{f} \) means the complex conjugate of \(f \). A closed subset \(E \) of \(\partial A \) is called a peak set for \(A \) if there is a function \(f \) in \(A \), which is called a peaking function for \(E \), such that \(||f|| = 1 \) and \(E = \{ x \in \partial A; |f(x)| = 1 \} = \{ x \in \partial A; f(x) = 1 \} \). If \(E \) is an intersection of peak sets, it is called a weak peak set for \(A \). A measure \(\mu \) on \(\partial A \) is called an annihilating measure for \(A \), if \(\int_{\partial A} f d\mu = 0 \) for every \(f \in A \).

For a point \(x \), \(A \) is called a QC-level set.

Let \(D \) be the open unit disk. Let \(L^\infty \) be the space of bounded measurable functions on \(\partial D \) with respect to the normalized Lebesgue measure \(d\theta/2\pi \). We identify a function \(f \) in \(H^\infty \) with its boundary function. Then \(H^\infty \) is an essentially uniformly closed subalgebra of \(L^\infty \). \(H^\infty + C \) is the smallest Douglas algebra which contains \(H^\infty \) properly [21], where \(C \) is the space of continuous functions on \(\partial D \). We put \(X = M(L^\infty) \), then \(X \) may be identified with \(\partial H^\infty \). We note that \(M(H^\infty + C) = M(H^\infty) \setminus D \), and \(D \) is weak*-dense in \(M(H^\infty) \) by the corona theorem (see [6]). For a subset \(E \) of \(M(H^\infty) \), we denote by \(c\ell E \) the weak*-closure of \(E \) in \(M(H^\infty) \). For a point \(x \) in \(M(H^\infty) \), we denote by \(\mu_x \) the unique representing measure for \(x \), and by \(\text{supp } \mu_x \) the closed support set for \(\mu_x \). \(\text{supp } \mu_x \) is a weak peak set for \(H^\infty \) [10, p. 207], and it is easy to see that \(H^\infty |\text{supp } \mu_x \) does not contain any nonconstant real functions. By Sarason [20],

\[H^\infty + C = \{ f \in L^\infty; f |\text{supp } \mu_x \in H^\infty |\text{supp } \mu_x \text{ for every } x \in M(H^\infty + C) \} \]

We use the notation \(m \) for the representing measure for the point 0 in \(D \), that is,

\[\int_X f dm = \int_{\partial D} f d\theta/2\pi \text{ for every } f \in H^\infty \]

For \(f \in L^\infty \) and a Douglas algebra \(B \), we put \(||f + B|| = \inf \{|||f + h||; h \in B\} \), the quotient norm of \(L^\infty /B \). For a subset \(E \) of \(L^\infty \), we denote by \([E] \) the uniformly closed subalgebra generated by \(E \).

Put \(QC = (H^\infty + C) \cap (H^\infty + C) \) and \(QA = H^\infty \cap QC \). By [20],

\[QC = \{ f \in L^\infty; f |\text{supp } \mu_x \text{ is constant for every } x \in M(H^\infty + C) \} \]

Then \(QC \) is a \(C^* \)-subalgebra of \(L^\infty \). Hence there is a continuous onto map \(\pi: X \to M(QC); f(\pi(x)) = f(x) \) for every \(f \in QC \). A closed subset \(\pi^{-1}(y), y \in M(QC) \), is called a \(QC \)-level set. A \(QC \)-level set is a weak peak set for \(QA \). For \(x \in M(H^\infty + C) \), there is a unique \(QC \)-level set \(Q_x \) such that \(Q_x \supset \text{supp } \mu_x \). We denote by \(m_0 \) the probability measure on \(M(QC) \) such that \(\int_{M(QC)} f dm_0 = \int_{\partial D} f d\theta/2\pi \) for every \(f \in QA \). Then we have \(m(\pi^{-1}(E)) = m_0(E) \) for measurable subsets \(E \) of \(M(QC) \).

For \(f \in L^\infty \), we put

\[N(f) = \text{the closure of } \bigcup \{ \text{supp } \mu_x; f |\text{supp } \mu_x \not\in H^\infty |\text{supp } \mu_x \} \]

and

\[Q(f) = \bigcup \{ \pi^{-1}(y); f |\pi^{-1}(y) \not\in H^\infty |\pi^{-1}(y), y \in M(QC) \} \]

Generally \(Q(f) \) is not a closed subset of \(X \).
A Blaschke product with zeros \(\{z_n\}_{n=1}^{\infty} \) in \(D \) is a function of the form

\[
b(z) = \prod_{n=1}^{\infty} \frac{z - z_n}{\bar{z}_n - z_n} \frac{z_n - \bar{z}_n}{1 - z_n z_n}
\]

for \(z \in D \), where \(\sum_{n=1}^{\infty} 1 - |z_n| < \infty \). If \(\{z_n\}_{n=1}^{\infty} \) satisfies moreover

\[
\inf \prod_{n \neq m} \frac{|z_n - z_m|}{1 - z_m z_n} > 0 \quad \left(\lim_{n \to \infty} \prod_{n \neq m} \frac{|z_n - z_m|}{1 - z_m z_n} = 1 \right)
\]

then \(\{z_n\}_{n=1}^{\infty} \) is called interpolating (sparse), and \(b(z) \) is called an interpolating (sparse) Blaschke product. These Blaschke products are inner functions, where a function \(I \in H^\infty \) with \(|I| = 1 \) on \(X \) is called inner. If \(I \) is an inner function, put \(Z(I) = \{x \in M(H^\infty + C): I(x) = 0 \} \). Then \(N(\bar{I}) = Q(\bar{I}) = \bigcup \{Q_x; x \in Z(I)\} \) [13, Theorem 1]. If \(b \) is an interpolating Blaschke product with zeros \(\{z_n\}_{n=1}^{\infty} \), then \(\text{cl}\{z_n\}_{n=1}^{\infty} \) is homeomorphic to the Stone-Čech compactification of \(\{z_n\}_{n=1}^{\infty} \) and \(Z(b) = \text{cl}\{z_n\}_{n=1}^{\infty} \setminus \{z_n\}_{n=1}^{\infty} \) [10, p. 205].

Let \(Y \) be a Banach space. We denote by ball \(\text{ball} Y \) the closed unit ball of \(Y \). A point \(y \) in ball \(\text{ball} Y \) is called extreme if \(\|y + x\| \leq 1, \ x \in Y, \) implies \(x = 0 \). A point \(y \) in ball \(\text{ball} Y \) is called exposed if there is a bounded linear functional \(\psi \) of \(\text{ball} Y \) such that \(\|\psi\| = 1, \ \psi(y) = 1 \) and \(\psi(x) \neq 1 \) for every \(x \in \text{ball} Y \) with \(x \neq y \). We note that an exposed point is extreme. A closed subspace \(Z \) of \(Y \) is called an \(M \)-ideal of \(Y \) if there is a projection \(P \) from \(Y^* \), the dual space of \(Y \), onto the annihilating subspace of \(Z \) in \(Y^* \), \(\{\psi \in Y^*; f = 0 \text{ on } Z\} \), such that \(\|x\| = \|Px\| + \|x - Px\| \) for every \(x \) in \(Y^* \).

2. The main theorem. In this section, we shall show the following theorem and give its applications.

Theorem 2.1. Let \(f \) and \(g \) be functions in \(L^\infty \). If for every \(x \in M(H^\infty + C) \) either \(f|_{\text{supp } \mu_x} \in H^\infty|_{\text{supp } \mu_x} \) or \(g|_{\text{supp } \mu_x} \in H^\infty|_{\text{supp } \mu_x} \), then \(N(f) \cap N(g) = \emptyset \).

To show Theorem 2.1, we need some lemmas.

Lemma 2.1 [24]. For an inner function \(I \), there is an interpolating Blaschke product \(b \) such that \([H^\infty, b] = [H^\infty, I] \).

Lemma 2.2. Let \(B \) be a Douglas algebra. Then the following assertions are equivalent.

(i) There is a function \(f \) in \(L^\infty \) with \(B = [H^\infty, f] \).

(ii) There is a sequence of interpolating Blaschke products \(\{I_n\}_{n=1}^{\infty} \) with \(B = [H^\infty, \{I_n\}_{n=1}^{\infty}] \).

Proof. Let \(f \in L^\infty \) with \(B = [H^\infty, f] \). By Chang-Marshall’s theorem, there is a sequence of inner functions \(\{I_n\}_{n=1}^{\infty} \) such that \(I_n \in [H^\infty, f] \) and \(\|I_n f + H^\infty\| \to 0 \) \((n \to \infty) \). Then \([H^\infty, f] \subset [H^\infty, \{I_n\}_{n=1}^{\infty}] \subset [H^\infty, f] \), so \([H^\infty, f] = [H^\infty, \{I_n\}_{n=1}^{\infty}] \). By Lemma 2.1, we may take \(I_n \) as an interpolating Blaschke product. Conversely suppose that \(B = [H^\infty, \{I_n\}_{n=1}^{\infty}] \) for a sequence of inner functions \(\{I_n\} \). We put \(f = \sum_{n=1}^{\infty} |I_n| + 1/3^n \). If \(I_n|_{\text{supp } \mu_x} \in M(H^\infty) \), is not constant, then
\(I_n(\supp \mu_x) = \partial D \). Hence \(f|\supp \mu_x \) is constant if and only if \(I_n|\supp \mu_x \) is constant for every \(n \). Since real functions in \(H^\infty|\supp \mu_x \) are constant functions for each \(x \in M(H^\infty) \), \(M([H^\infty, f]) = M([H^\infty, \{ I_n \}_{n=1}^\infty]) \). By Chang-Marshall’s theorem, \(f \) is the desired function.

The following lemma is a special case of Theorem 2.1 proved in [13, Corollary 3].

Lemma 2.3. Let \(I \) and \(J \) be inner functions. If for every point \(x \) in \(M(H^\infty+C) \) either \(\tilde{I}|\supp \mu_x \in H^\infty|\supp \mu_x \) or \(\tilde{J}|\supp \mu_x \in H^\infty|\supp \mu_x \), then \(N(\tilde{I}) \cap N(\tilde{J}) = \emptyset \).

Lemma 2.4. Let \(I \) be an interpolating Blaschke product. Let \(E \) be a closed subset of \(D \) such that \(\partial E \notin E \subset \{ x \in M(H^\infty+C); |I(x)| = 1 \} \). Then for each \(\varepsilon \) with \(0 < \varepsilon < 1 \), there is an interpolating Blaschke product \(b \) satisfying that \(|b| \geq \varepsilon \) on \(E \).

Proof. Let \(\{ z_n \}_{n=1}^\infty \) be the zero sequence of \(I \). We denote by \(I_k \) the interpolating Blaschke product with zeros \(\{ z_{n,k} \}_{n=k}^\infty \). By our assumption, there exists a constant \(r \) such that \(0 < r < 1 \) and \(|I| \geq \varepsilon \) on \(\{ z \in E; |z| > r \} \). Since \(|I_k| \to 1 \) \((k \to \infty)\) uniformly on each compact subset of \(D \), \(|I_k| \geq \varepsilon \) on \(\{ z \in E; |z| \leq r \} \) for sufficiently large \(k \). Put \(b = I_k \), then \(b \) satisfies our assertion.

The following is a key lemma to prove Theorem 2.1.

Lemma 2.5. Let \(\{ I_n \}_{n=1}^\infty \) be a sequence of interpolating Blaschke products such that \(\prod_{n=1}^\infty I_n \) is a Blaschke product. Let \(g \) be a function in \(L^\infty \). Suppose that for every \(x \in M(H^\infty+C) \) either \(g|\supp \mu_x \in H^\infty|\supp \mu_x \) or \(\tilde{I}_n|\supp \mu_x \in H^\infty|\supp \mu_x \) for all \(n \). Then there exists a Blaschke product \(I \) such that

(i) \((\prod_{n=1}^\infty I_n)|\tilde{I} \in H^\infty \); consequently \(N(\tilde{I}) \subset N(\prod_{n=1}^\infty I_n) \);

(ii) either \(\tilde{I}|\supp \mu_x \in H^\infty|\supp \mu_x \) or \(g|\supp \mu_x \in H^\infty|\supp \mu_x \) for every \(x \in M(H^\infty+C) \); and

(iii) \(N(I_n) \subset N(\tilde{I}) \) for all \(n \).

Proof. By Lemma 2.2, there is a sequence of interpolating Blaschke products \(\{ J_m \}_{m=1}^\infty \) such that

\[
[H^\infty, g] = [H^\infty, \{ J_m \}_{m=1}^\infty].
\]

By our assumption, for every \(x \in M(H^\infty+C) \), either \(\tilde{I}_n|\supp \mu_x \in H^\infty|\supp \mu_x \) for all \(n \) or \(\tilde{J}_m|\supp \mu_x \in H^\infty|\supp \mu_x \) for all \(m \). By Lemma 2.3,

\[
N(\tilde{I}_n) \cap N(\tilde{J}_m) = \emptyset \quad \text{for every } n \text{ and } m.
\]

Let \(\{ z_{n,k} \}_{k=1}^\infty \) be the zero sequence of \(I_n \). Put \(I_0 = \prod_{n=1}^\infty I_n \). Since \(I_0 \) is a Blaschke product, we have

\[
\sum_{n=1}^\infty \sum_{k=1}^\infty (1 - |z_{n,k}|) < \infty.
\]

For each \(m \), we put

\[
U_{m,i} = \{ z \in D; |J_m(z)| \leq 1 - 1/i, \quad |z| \geq 1 - 1/i \}
\]

for \(i = 1, 2, \ldots \). Then \(U_{m,i} \) is a closed subset of \(D \). By (2) and (4), \(I_n (= I) \) and \(U_{m,i} (= E) \) satisfy the assumptions of Lemma 2.4. Because, if there is \(x \)
COUNTABLY GENERATED DOUGLAS ALGEBRAS 175

in \(c \{ U_{m,i} \setminus U_{m,i} \} \) with \(|I_n(x)| \neq 1\), then \(|J_m(x)| \leq 1 - 1/i\), so we get \(\supp \mu_x \subset N(\overline{T_n}) \cap N(\overline{T_m}) \).

First we shall work on \(J_1 \), and we shall find a sequence of interpolating Blaschke products \(\{ b_{1,n} \}_{n=1}^{\infty} \) satisfying the following two conditions by induction.

5) \(I_n \bar{b}_{1,n} \) is a finite Blaschke product, and

6) \(\inf \{ |b_{1,i}b_{1,i+1} \cdots b_{1,n}(z)| ; z \in U_{1,i} \} > 1 - 1/i \) for \(1 \leq i \leq n \).

Applying Lemma 2.4 for \(I_1 \) and \(U_{1,1} \), there is an interpolating Blaschke product \(b_{1,1} \) such that \(I_1 \bar{b}_{1,1} \) is a finite Blaschke product and \(\inf \{ |b_{1,1}(z)| ; z \in U_{1,1} \} > 0 \). Suppose that \(\{ b_{1,1}, b_{1,2}, \ldots, b_{1,N} \} \) satisfies (5) and (6) for \(1 \leq i \leq n \leq N \). For \(1 \leq i \leq N \), we put

\[c(N, i) = \inf \{ |b_{1,i}b_{1,i+1} \cdots b_{1,N}(z)| ; z \in U_{1,i} \}. \]

By (6), \(c(N, i) > 1 - 1/i \). Also we put

\[E = \bigcup \{ U_{1,i} ; 1 \leq i \leq N + 1 \}, \]

then \(I = I_{N+1} \) and \(E \) satisfy the assumptions of Lemma 2.4. Let \(\varepsilon \) be a constant satisfying

\[1 > \varepsilon > \max \left\{ 1 - \frac{1}{N+1}, \frac{1 - 1/i}{c(N, i)} ; 1 \leq i \leq N \right\}. \]

By Lemma 2.4, there is an interpolating Blaschke product \(b_{1,N+1} \) such that \(I_{N+1} \bar{b}_{1,N+1} \) is a finite Blaschke product and

\[|b_{1,N+1}| \geq \varepsilon \quad \text{on } E. \]

Thus we get the following inequalities.

For \(1 \leq i < N + 1 \);

\[\inf \{ |b_{1,i}b_{1,i+1} \cdots b_{1,N+1}(z)| ; z \in U_{1,i} \} \]

\[\geq \inf \{ |b_{1,i}b_{1,i+1} \cdots b_{1,N}(z)| ; z \in U_{1,i} \} \inf \{ |b_{1,N+1}(z)| ; z \in U_{1,i} \} \]

\[> c(N, i) \varepsilon \quad \text{by (7), (8) and (10)} \]

\[> 1 - 1/i \quad \text{by (9)}. \]

For \(i = N + 1 \);

\[\inf \{ |b_{1,N+1}(z)| ; z \in U_{1,N+1} \} \geq \varepsilon > 1 - 1/N + 1 \quad \text{by (8), (9) and (10)}. \]

Consequently \(\{ b_{1,1}, b_{1,2}, \ldots, b_{1,N+1} \} \) satisfies (5) and (6). This completes the construction of \(\{ b_{1,n} \}_{n=1}^{\infty} \).

In the above proof, we use only the fact \(N(\overline{J_1}) \cap N(\overline{T_n}) = \emptyset \) for \(n = 1, 2, \ldots \). By (2) and (5), we have \(N(\overline{J_2}) \cap N(\overline{b_{1,n}}) = \emptyset \). So we can repeat the above argument for \(J_2 \) and \(\{ b_{1,n} \}_{n=2}^{\infty} \), we remark that \(n \) starts from 2. Then there is a sequence of interpolating Blaschke products \(\{ b_{2,n} \}_{n=2}^{\infty} \) such that \(b_{1,n} \bar{b}_{2,n} \) is a finite Blaschke product for \(n \geq 2 \) and

\[\inf \{ |b_{2,i}b_{2,i+1} \cdots b_{2,n}(z)| ; z \in U_{2,i} \} > 1 - 1/i \quad \text{for } 2 \leq i \leq n. \]

Repeating the above argument several times, for each \(m \) there is a sequence of interpolating Blaschke products \(\{ b_{m,n} \}_{n=m}^{\infty} \) such that

\[b_{m,n} \bar{b}_{m+1,n} \] is a finite Blaschke product for \(m + 1 \leq n \),
and
\begin{equation}
\inf\{b_{m,i}b_{m,i+1}\ldots b_{m,n}(z) ; z \in U_{m,i}\} > 1 - 1/i \quad \text{for } m \leq i \leq n.
\end{equation}

We put \(I = \prod_{n=1}^{\infty} b_{n,n} \). By (3) and (11), \(I \) is a Blaschke product and \(I_0I \in H^\infty \), so we get (i). We shall prove that \(I \) satisfies (ii) and (iii).

To prove (ii), let \(x \in M(H^\infty + C) \) with \(|\text{supp } \mu_x| \notin H^\infty |\text{supp } \mu_x| \). We shall prove \(|\text{supp } \mu_x| \in H^\infty |\text{supp } \mu_x| \), that is, \(|J_m(x)| < 1 \). Take a positive integer \(i_0 \) with \(m \leq i_0 \) and
\begin{equation}
|J_m(x)| < 1 - 1/i_0.
\end{equation}

Let \(i \geq i_0 \). By (4), (13) and the corona theorem, \(x \in \text{cl } U_{m,i_0} \setminus U_{m,i_0} \). Since \(|b_{m,n}| \leq |b_{n,n}| \) on \(D \) for \(m \leq n \) by (11), we have
\[
\inf\left\{ \prod_{n=i}^{\infty} b_{n,n}(z) ; z \in U_{m,i} \right\} \geq \inf\left\{ \prod_{n=i}^{\infty} b_{n,n}(z) ; z \in U_{m,i} \right\} \\
\geq 1 - 1/i \quad \text{by (12)}.
\]

Then
\[
\left| \prod_{n=i}^{\infty} b_{n,n} \right| \geq 1 - \frac{1}{i} \quad \text{on } \text{cl } U_{m,i} \setminus U_{m,i}.
\]

By (5) and (11), \(|I_n| = |b_{n,n}| \) on \(M(H^\infty + C) \) for \(n = 1, 2, \ldots \). By (2) and (4), \(|I_n| = 1 \) on \(\text{cl } U_{m,i} \setminus U_{m,i} \) for \(n = 1, 2, \ldots \). Thus
\[
|I| = \left| \prod_{n=1}^{\infty} b_{n,n} \right| \geq 1 - \frac{1}{i} \quad \text{on } \text{cl } U_{m,i} \setminus U_{m,i}.
\]

Since \(\text{cl } U_{m,i} \setminus U_{m,i} \subset \text{cl } U_{m,j} \setminus U_{m,j} \) for \(i \leq j \) by (4), we get
\[
|I| \geq 1 - 1/i \quad \text{on } \text{cl } U_{m,i_0} \setminus U_{m,i_0} \quad \text{for every } i \geq i_0.
\]

Thus \(|I| = 1 \) on \(\text{cl } U_{m,i_0} \setminus U_{m,i_0} \). Since \(x \in \text{cl } U_{m,i_0} \setminus U_{m,i_0} \), \(|I(x)| = 1 \). Hence \(I \) is constant on \(\text{supp } \mu_x \), and \(|\text{supp } \mu_x| \in H^\infty |\text{supp } \mu_x| \). This completes the proof of (ii).

Since \(|I_n| = |b_{n,n}| \) on \(M(H^\infty + C) \) for each \(n \),
\[
|I| = \left| \prod_{n=1}^{\infty} b_{n,n} \right| \leq |b_{n,n}| = |I_n| \quad \text{on } M(H^\infty + C).
\]

Thus we get \(N(I) \supset N(I_n) \). This completes the proof.

Proof of Theorem 2.1. Let \(f \) and \(g \) be functions in \(L^\infty \) such that for every \(x \in M(H^\infty + C) \) either \(f|\text{supp } \mu_x| \in H^\infty |\text{supp } \mu_x| \) or \(g|\text{supp } \mu_x| \in H^\infty |\text{supp } \mu_x| \). We shall show the existence of a Blaschke product \(I \) such that
\[
\text{(a)} \quad \text{either } |I| \text{supp } \mu_x \in H^\infty |\text{supp } \mu_x| \text{ or } |I| \text{supp } \mu_x \in H^\infty |\text{supp } \mu_x| \text{ for every } x \in M(H^\infty + C),
\]
\[
\text{(b)} \quad N(I) \supset N(f).
\]

If the above fact is proved, applying it again, we get a Blaschke product \(J \) such that
\[
\text{(a')} \quad |J| \text{supp } \mu_x \in H^\infty |\text{supp } \mu_x| \text{ or } |J| \text{supp } \mu_x \in H^\infty |\text{supp } \mu_x| \text{ for every } x \in M(H^\infty + C),
\]
\[
\text{(b')} \quad N(J) \supset N(g).
\]
Then by Lemma 2.3, $N(\bar{T}) \cap N(J) = \emptyset$, so we get our assertion.

Using Lemma 2.5, we shall show the existence of a Blaschke product I satisfying (a) and (b). By Lemma 2.2, there is a sequence of interpolating Blaschke products $\{I_n\}_{n=1}^{\infty}$ such that

$$[H^\infty, f] = [H^\infty, \{I_n\}_{n=1}^{\infty}].$$

We note that if $f|\text{supp} \mu_x \in H^\infty|\text{supp} \mu_x$ for some $x \in M(H^\infty + C)$, then we get $\bar{T}_n|\text{supp} \mu_x \in H^\infty|\text{supp} \mu_x$ for all n. Let $\{z_{n,k}\}_{k=1}^{\infty}$ be the zero sequence of I_n. Replacing I_n by I'_n such that $I_n I'_n$ is a finite Blaschke product, we may assume that

$$\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} (1 - |z_{n,k}|) < \infty.$$

Then $\prod_{n=1}^{\infty} I_n$ is a Blaschke product. By our assumption, $\{I_n\}_{n=1}^{\infty}$ and g satisfy the assumptions of Lemma 2.5. Hence there is a Blaschke product I satisfying (a) and $N(\bar{T}) \supset N(\bar{T}_n)$ for all n. Since $N(f)$ coincides with the closure of $\bigcup\{N(\bar{T}_n); n = 1, 2, \ldots\}$, we get (b). This completes the proof.

To prove the corollaries, we give two lemmas.

LEMMA 2.6 (Sarason's unpublished result, see [8, Theorem 2.8]). Let $f \in L^\infty$ with $f^2 = f$, and let Q be a QC-level set. If $f|Q \in H^\infty|Q$, then $f|Q$ is a constant.

LEMMA 2.7. Let b be a sparse Blaschke product with zeros $\{w_n\}_{n=1}^{\infty}$ and I be an inner function. Then $N(b) \cap N(\bar{T}) = \emptyset$ if and only if $|I(w_n)| \rightarrow 1$ ($n \rightarrow \infty$).

PROOF. Suppose $N(\bar{b}) \cap N(\bar{T}) = \emptyset$. Then $|I| = 1$ on $Z(b)$. Since $Z(b) = \text{cl}\{w_n\}_{n=1}^{\infty} \setminus \{w_n\}_{n=1}^{\infty}$, $|I(w_n)| \rightarrow 1$ ($n \rightarrow \infty$). Next suppose that $|I(w_n)| \rightarrow 1$ ($n \rightarrow \infty$). Then $|I| = 1$ on $Z(b)$. Let $x \in M(H^\infty + C)$ with $|b(x)| < 1$. Then there is a point x_0 in $Z(b)$ with $\text{supp} \mu_{x_0} = \text{supp} \mu_x$ by the proof of Lemma 1 in [9]. Since $|I(x_0)| = 1$, we have $|I(x)| = 1$. Thus

$$\{x \in M(H^\infty + C); |I(x)| < 1\} \cap \{y \in M(H^\infty + C); |b(y)| < 1\} = \emptyset.$$

By Lemma 2.3, we have $N(\bar{b}) \cap N(\bar{T}) = \emptyset$.

The following corollary shows that $N(f)$ consists of QC-level sets, which is a generalization of Theorem 1 in [13].

COROLLARY 2.1. For $f \in L^\infty$, $N(f) = \pi^{-1}(\pi(N(f)))$ and $N(f)$ is a weak peak set for QA.

PROOF. The inclusion $N(f) \subset \pi^{-1}(\pi(N(f)))$ is trivial. Suppose that $N(f) \subsetneq \pi^{-1}(\pi(N(f)))$. Then there is a QC-level set Q with $N(f) \cap Q \neq \emptyset$ and $Q \notin N(f)$. Take an open and closed subset U of X with $U \cap N(f) = \emptyset$ and $U \cap Q \neq \emptyset$. Then f and χ_U, the characteristic function of U, satisfy the assumption of Theorem 2.1. Thus $N(f) \cap N(\chi_U) = \emptyset$. By Lemma 2.6, $\chi_U|Q \notin H^\infty|Q$. Since Q is a weak peak set for H^∞, there is $x \in M(H^\infty + C)$ such that $\text{supp} \mu_x \subset Q$ and $\chi_U|\text{supp} \mu_x \notin H^\infty|\text{supp} \mu_x$. Thus $N(\chi_U) \cap Q \neq \emptyset$. But this contradicts $N(f) \cap Q \neq \emptyset$ and $N(f) \cap N(\chi_U) = \emptyset$. Thus $N(f) = \pi^{-1}(\pi(N(f)))$. By Wolff's theorem [23, Theorem 1 and Lemma 2.3] as the proof of Theorem 1 in [13], $N(f)$ is a weak peak set for QA.

The following follows Corollary 2.1.
COROLLARY 2.2. For \(f \in L^\infty \), \(Q(f) \subset N(f) \) and \(\overline{cl\, Q(f)} = N(f) \).

For \(f \in L^\infty \), we put \(Q_0(f) = \bigcup \{ \pi^{-1}(y) ; y \in M(QC) \} \) and \(f|\pi^{-1}(y) \) is not constant.

COROLLARY 2.3. For \(f \in L^\infty \), \(Q(f) \cup Q(\tilde{f}) \subset Q_0(f) \subset N(f) \cup N(\tilde{f}) \).

PROOF. By the definitions, \(Q(f) \cup Q(\tilde{f}) \subset Q_0(f) \). Suppose that \(Q_0(f) \not\subset N(f) \cup N(\tilde{f}) \). By Corollary 2.1, there is a \(QC \)-level set \(Q \) with \(Q \cap (N(f) \cup N(\tilde{f})) = \emptyset \) and \(Q \subset Q_0(f) \). Take a function \(q \) in \(QC \) such that \(q \) is constant on \(Q_0(f) \). By \(20 \), \(f \in QC \), so \(f \) is constant on \(Q_0(f) \). This fact contradicts \(Q \subset Q_0(f) \).

REMARK. In §6, we will prove that \(Q(f) = N(f) \) if and only if \([H^\infty, f] \) is singly generated. If \(f \in H^\infty \), \(Q(f) \subset Q_0(f) \subset N(f) \) by Corollary 2.3. Moreover if there is a \(QC \)-level set \(Q \) such that \(f | Q \) is real nonconstant, then \(Q(\tilde{f}) \subset Q_0(\tilde{f}) \), and \([H^\infty, \tilde{f}] \) is not singly generated.

COROLLARY 2.4. Let \(f \in L^\infty \). If \(I \) is an interpolating Blaschke product with \(N(I) \subset N(f) \), then \(\tilde{I} \in [H^\infty, f] \).

PROOF. Suppose \(\tilde{I} \notin [H^\infty, f] \). Then there is a point \(x_0 \) in \(M([H^\infty, f]) \) with \(I(x_0) = 0 \). Let \(\{w_k\}_{k=1}^\infty \) be the zero sequence of \(I \). Then \(x_0 \in \overline{cl\{w_k\}_{k=1}^\infty} \). By Lemma 2.2, \([H^\infty, f] = [H^\infty, \{I_n\}_{n=1}^\infty] \) for some sequence of interpolating Blaschke products \(\{I_n\}_{n=1}^\infty \). Since \(|I_n(x_0)| = 1 \), there is a subsequence \(\{w_{k_n}\}_{n=1}^\infty \) of \(\{w_k\}_{k=1}^\infty \) such that \(|I_n(w_{k_n})| \to 1 \) \((k \to \infty)\) for every \(n \). Taking again its subsequence, we may assume that \(\{w_{k_n}\}_{n=1}^\infty \) is a sparse sequence. Let \(b \) be the sparse Blaschke product with zeros \(\{w_{k_n}\}_{n=1}^\infty \). By Lemma 2.7, \(N(b) \cap N(I_n) = \emptyset \) for every \(n \). Hence \(b \) and \(f \) satisfy the assumption of Theorem 2.1. Then \(N(b) \cap N(f) = \emptyset \). This contradicts \(N(I) \subset N(f) \), because \(N(b) \subset N(I) \).

COROLLARY 2.5 (CF. [13, COROLLARY 5]). Let \(f \) and \(g \) be functions in \(L^\infty \). Then \(N(f) \subset N(g) \) if and only if \([H^\infty, f] \subset [H^\infty, g] \).

PROOF. Suppose \(N(f) \subset N(g) \). Let \(I \) be an interpolating Blaschke product with \(\tilde{I} \in [H^\infty, f] \). Then \(N(\tilde{I}) \subset N(f) \subset N(g) \). By Corollary 2.4, we have \(\tilde{I} \in [H^\infty, g] \). By Chang-Marshall’s theorem, \([H^\infty, f] \subset [H^\infty, g] \). The converse assertion is trivial.

For a Douglas algebra \(B \), let \(N(B) \) equal the closure of

\[
\bigcup \{ \text{supp} \mu_x ; x \in M(H^\infty + C) \setminus M(B) \}.
\]

We note that \(N([H^\infty, f]) = N(f) \).

COROLLARY 2.6 (CF. [13, COROLLARIES 4 AND 6]). Let \(B \) be a Douglas algebra.

(i) If \(f \in L^\infty \) satisfies \(N(B) \subset N(f) \), then \(B \subset [H^\infty, f] \).

(ii) Let \(f \in B \). Then \(N(f) = N(B) \) if and only if \(B = [H^\infty, f] \). Consequently \(B \) is countably generated if and only if there is \(f \in B \) with \(N(f) = N(B) \).

PROOF. (i) Let \(I \) be an inner function with \(\tilde{I} \in B \). Then \(N(\tilde{I}) \subset N(B) \subset N(f) \). By Corollary 2.4, \(\tilde{I} \in [H^\infty, f] \). Thus \(B \subset [H^\infty, f] \).

(ii) By (i),

\[
N(f) = N(B) \iff B \subset [H^\infty, f] \subset B \iff B = [H^\infty, f].
\]
3. Geometrical properties of quotient spaces of Douglas algebras. In [14], the author showed that a Douglas algebra \(B \) is singly generated if and only if ball\((B/H^\infty + C)\) has extreme points. In this section, we shall prove two theorems as applications of \(\S 2 \). The first one, Theorem 3.1, is a geometrical characterization of countably generated Douglas algebras. In Theorem 3.2, we shall show that there are no exposed points in ball\((B/H^\infty + C)\). This is already proved in [15, Theorem 4] for \(B = [H^\infty, \bar{b}] \), where \(\bar{b} \) is a sparse Blaschke product. To state Theorem 3.1, we define an extreme family.

Let \(Y \) be a Banach space. If a subset \(E \) of ball \(Y \) satisfies the following conditions, we shall call it an extreme family:

(a) \(\|y\| = 1 \) for every \(y \in E \), and

(b) if a point \(y_0 \) in \(Y \) satisfies \(\|y + y_0\| \leq 1 \) for every \(y \in E \), then \(y_0 = 0 \).

By our definition, an extreme family consisting of only one element is an extreme point of ball \(Y \).

Theorem 3.1. Let \(B \) be a Douglas algebra with \(B \supseteq H^\infty + C \). Then \(B \) is countably generated if and only if \(B/H^\infty + C \) has an extreme family consisting of countably many elements.

Lemma 3.1 [13, Theorem 1]. For an inner function \(I \), we have \(N(I) = Q(I) = \bigcup \{Q_x; x \in Z(I)\} \).

Proof of Theorem 3.1. First, suppose that \(B = [H^\infty, \{\overline{I_n}\}_{n=1}^\infty] \) for a sequence of interpolating Blaschke products \(\{\overline{I_n}\}_{n=1}^\infty \). It is easy to see

\[\|\overline{I_n} + H^\infty + C\| = 1. \]

We shall show that \(\{\overline{I_n} + H^\infty + C\}_{n=1}^\infty \) is an extreme family of ball\((B/H^\infty + C)\).

Let \(g \in B \) with

\[(1) \quad \|\overline{I_n} \pm g + H^\infty + C\| \leq 1 \quad \text{for every } n. \]

By Corollary 2.1 (or see [13, Theorem 1]), \(N(\overline{I_n}) \) is a weak peak set for \(QA \). Then \(B_n = \{f \in L^\infty; f|N(\overline{I_n}) \subseteq H^\infty|N(\overline{I_n})\} \) is a Douglas algebra. By (1), we have \(\|\overline{I_n} \pm g + B_n\| \leq 1 \). By [13, Theorem 3], \(\overline{I_n} + B_n \) is an extreme point of ball\((L^\infty/B_n)\). Thus \(g \in B_n \), that is,

\[(2) \quad g|N(\overline{I_n}) \subseteq H^\infty|N(\overline{I_n}) \quad \text{for each } n. \]

To show \(g \in H^\infty + C \), let \(x \in M(H^\infty + C) \). If \(|I_n(x)| = 1 \) for every \(n \), then \(x \in M(B) \) and \(g|\supp \mu_x \subseteq H^\infty|\supp \mu_x \). If \(|I_n(x)| < 1 \) for some \(n \), then \(\supp \mu_x \subseteq N(\overline{I_n}) \). By (2), \(g|\supp \mu_x \subseteq H^\infty|\supp \mu_x \). By [20], we get \(g \in H^\infty + C \). Thus \(\{\overline{I_n} + H^\infty + C\}_{n=1}^\infty \) is an extreme family.

Next suppose that \(B \) is not countably generated. Let \(\{f_n\}_{n=1}^\infty \) be a sequence in \(B \) with \(\|f_n + H^\infty + C\| = 1 \). Since \(H^\infty + C \) has the best approximation property [2], we may assume \(\|f_n\| = 1 \). By Lemma 2.2, there is a function \(F \) in \(L^\infty \) such that

\[(3) \quad [H^\infty, \{f_n\}_{n=1}^\infty] = [H^\infty, F] \subset B. \]

Since \([H^\infty, F]\) is countably generated by Lemma 2.2, there is an interpolating Blaschke product \(I \) with \(\overline{I} \in B \) and \(\overline{I} \notin [H^\infty, F] \). By Corollary 2.4, we have
By Corollary 2.1, there is a QC-level set \(Q \) such that \(Q \cap N(F) = \emptyset \) and \(Q \subset N(\bar{I}) \). Then there is a function \(q \) in QC such that

\[
0 \leq q \leq 1 \quad \text{and} \quad q = 1 \quad \text{on} \quad Q,
\]

\[
q = 0 \quad \text{on} \quad N(F).
\]

By Lemma 3.1, we get \(\bar{I}q \in B \) and \(\bar{I}q \notin H^\infty + C \). By (3) and (5), \(qf_n \in H^\infty + C \). Then

\[
\|f_n \pm \bar{I}q + H^\infty + C\| \leq \|f_n \pm \bar{I}q - qf_n\|
\]

\[
\leq \|1 - q\| + |q| = 1 \quad \text{by} \quad \|f_n\| = 1 \quad \text{and} \quad (4).
\]

Thus \(\{f_n + H^\infty + C\} \) is not an extreme family, and this completes the proof.

To prove Theorem 3.2, we need lemmas.

Lemma 3.2. Let \(f \in L^\infty \) and \(f \notin H^\infty + C \). Then \(N(f) \) contains uncountably many QC-level sets.

Proof. By Chang-Marshall’s theorem, there is an interpolating Blaschke product \(I \) with \(\bar{I} \in [H^\infty, f] \). Then \(N(\bar{I}) \subset N(f) \). Let \(\{z_n\}_{n=1}^\infty \) be the zero sequence of \(I \). Take a sparse subsequence \(\{w_n\}_{n=1}^\infty \) of \(\{z_n\}_{n=1}^\infty \), and let \(b \) be the sparse Blaschke product with zeros \(\{w_n\}_{n=1}^\infty \). Then \(Z(b) \subset Z(\bar{I}) \). By [13, Lemma 5], \(Q_x \neq Q_y \) for \(x, y \in Z(\bar{I}) \) and \(x \neq y \). Since \(Z(b) = \text{cl}\{w_n\}_{n=1}^\infty \setminus \{w_n\}_{n=1}^\infty \) and \(\text{cl}\{w_n\}_{n=1}^\infty \) is homeomorphic to the Stone-Čech compactification of \(\{w_n\}_{n=1}^\infty \), \(Z(b) \) is an uncountable set.

The following lemma is a key to prove Theorem 3.2.

Lemma 3.3. Let \(I \) be an interpolating Blaschke product. Let \(\mu \) be a probability measure on \(N(\bar{I}) \). Then \(\supp \mu \subset \subset N(\bar{I}) \), and there is a sparse Blaschke product \(b \) such that \(Ib \in H^\infty \) and \(N(b) \subset N(\bar{I}) \setminus \supp \mu \).

Proof. By Lemma 3.2, \(N(\bar{I}) \) contains uncountably many QC-level sets. Then there is a QC-level set \(Q \) such that \(Q \subset N(\bar{I}) \) and \(\mu(Q) = 0 \). Since \(Q \) is a weak peak set for \(QA \), there is a peak set \(E \) for \(QA \) such that

\[
Q \subset E \subset X \quad \text{and} \quad \mu(E) = 0.
\]

Let \(f \) be a peaking function in \(QA \) for \(E \), that is,

\[
f = 1 \quad \text{on} \quad E \quad \text{and} \quad \|f\| < 1 \quad \text{on} \quad X \setminus E.
\]

We put

\[
K_n = \{x \in X; |f(x)| \leq 1 - 1/n\}.
\]

Then

\[
\mu(K_n \cap N(\bar{I})) = \mu(K_n) \to 1 \quad \text{as} \quad n \to \infty.
\]

By Lemma 3.1, there is a point \(x_0 \in Z(I) \) such that \(Q = Q_{x_0} \). Take an open and closed subset \(U_n \) of \(Z(I) \) such that

\[
\{x \in Z(I); |f(x)| \leq 1 - 1/n\} \subset U_n \subset \{x \in Z(I); |f(x)| \leq 1 - 1/n + 1\}.
\]

Then \(U_n \cup \{Q_x; x \in U_n\} \subset K_{n+1} \), because \(f \in QA \) is constant on each QC-level set. Since \(U_n \) is an open and closed subset of \(Z(I) \), there is an interpolating Blaschke product \(I_n \) with \(\bar{I}I_n \in H^\infty \) and \(Z(I_n) = U_n \) [12, Corollary 1]. By Lemma 3.1,

\[
N(\bar{I}_n) \subset K_{n+1}.
\]
Moreover we have

\[K_n \cap N(\bar{I}) \subset N(\bar{I}_n). \]

To show (6), let \(y \in K_n \cap N(\bar{I}). \) By Lemma 3.1, there is a point \(x_1 \in Z(I) \) such that \(y \in Q_{x_1}. \) Since \(|f(y)| < 1 - 1/n, \) \(|f(x_1)| < 1 - 1/n. \) Thus \(x_1 \in U_n \) and \(y \in N(\bar{I}_n). \) Since \(Q_{x_0} \cap N(\bar{I}_n) = \emptyset \) by (1), (2), (3) and (5), we have \(|I_n(x_0)| = 1. \) Since \(I(x_0) = 0, I \not\in [H^\infty, \{\bar{I}_n\}]_{n=1}. \) By the proof of Corollary 2.4, there is a sparse Blaschke product \(b \) such that

\[I_b \in H^\infty \quad \text{and} \quad N(b) \cap \text{cl} \left(\bigcup \{N(\bar{I}_n); n = 1, 2, \ldots \} \right) = \emptyset. \]

Since \(I_b \in H^\infty, N(b) \subset N(\bar{I}). \) By equations (4) and (6), we have \(\text{supp } \mu \subset \text{cl} \left(\bigcup \{N(\bar{I}_n); n = 1, 2, \ldots \} \right). \) Thus we get our assertions.

Theorem 3.2. Let \(B \) be a Douglas algebra with \(B \supsetneq H^\infty + C. \) Then there are no exposed points in \(\text{ball}(B/H^\infty + C). \)

Proof. By [14] and Lemma 2.1, we may assume \(B = [H^\infty, \{\bar{I}_n\}] \) for some interpolating Blaschke product \(I. \) Let \(f \in B \) with \(\|f + H^\infty + C\| = 1. \) Since \(H^\infty + C \) has the best approximation property [2], we may assume \(\|f\| = 1. \) Let \(\mu \) be a measure on \(X \) such that \(\|\mu\| = 1, \mu \perp H^\infty + C, \) and \(\int_X f d\mu = 1. \) By [13, Lemma 9], \(\text{supp } \mu \subset N(\bar{I}). \) By Lemmas 3.1 and 3.3, there is a QC-level set \(Q \) with \(Q \subset N(\bar{I}) \) and \(Q \cap \text{supp } \mu = \emptyset. \) This fact is the key point to prove a special case of Theorem 3.2 [13, Theorem 3]. We can go the same way as in [13], and we can show the existence of \(g \) in \(B \) such that \(\|g + H^\infty + C\| = 1, \int_X g d\mu = 1 \) and \(f + H^\infty + C \neq g + H^\infty + C. \) This completes the proof.

4. Sarason’s three functions problem

In [22], Sarason showed that if \(f \) and \(g \) in \(L^\infty \) satisfy \(f|\text{supp } \mu_x \in H^\infty |\text{supp } \mu_x \) or \(g|\text{supp } \mu_x \in H^\infty |\text{supp } \mu_x \) for every \(x \in M(H^\infty + C), \) then \(f|Q \in H^\infty |Q \) or \(g|Q \in H^\infty |Q \) for every QC-level set \(Q. \) The following problem occurs from the above fact [22]; is it still true for three functions in \(L^\infty ? \) In this section, we shall show

Theorem 4.1. Let \(\{f_n\}_{n=1}^N \) be a finite subset of \(L^\infty. \) Suppose that for each point \(x \in M(H^\infty + C), \) there exists \(n \) such that \(f_n| \text{supp } \mu_x \in H^\infty |\text{supp } \mu_x. \) Then \(\bigcap_{n=1}^N N(f_n) = \emptyset. \)

We note that Corollary 2.1 and Theorem 4.1 give an affirmative answer for the above problem. To show Theorem 4.1, we need some lemmas.

Lemma 4.1. Let \(B \) be a Douglas algebra. Then \(B \) is countably generated if and only if \(M(B) \) is a \(G_\delta \)-subset of \(M(H^\infty). \)

Proof. Let \(B = [H^\infty, \{\bar{I}_n\}]_{n=1}^\infty \) for a sequence of inner functions \(\{I_n\}_{n=1}^\infty. \) Then

\[
M(B) = \{x \in M(H^\infty); |I_n(x)| = 1 \text{ for every } n\}
= \bigcap_{n=1}^\infty \{x \in M(H^\infty); |I_n(x)| = 1\}.
\]

It is easy to see that \(M(B) \) is a \(G_\delta \)-subset of \(M(H^\infty). \)
Suppose that $M(B)$ is a G_δ-subset of $M(H^\infty)$. Then there is a sequence of open subsets $\{U_n\}_{n=1}^\infty$ of $M(H^\infty)$ with $\bigcap_{n=1}^\infty U_n = M(B) = \bigcap_{I \in B} \{ x \in M(H^\infty) ; |I(x)| = 1 \}$, where I runs through all inner functions with $I \in B$. Since $U_n^c \subset M(H^\infty) \setminus M(B)$ and U_n^c is a compact subset of $M(H^\infty)$, there is an inner function I_n such that $I_n \in B$ and $U_n^c \subset \{ x \in M(B) ; |I_n(x)| < 1 \}$. Then $M(B) = M(H^\infty, \{I_n\}_{n=1}^\infty)$. By Chang-Marshall’s theorem, we obtain $B = [H^\infty, \{I_n\}_{n=1}^\infty]$.

Lemma 4.2 (Sarason’s unpublished result, see [7, Theorem 3.4]). Let $\{B_\alpha\}_{\alpha \in \Lambda}$ be a family of Douglas algebras. Then $M(\bigcap_{\alpha \in \Lambda} B_\alpha)$ coincides with the closure of $\bigcup_{\alpha \in \Lambda} M(B_\alpha)$ in $M(H^\infty)$.

Lemma 4.3. For functions f and g in L^∞, there is a function h in L^∞ with $[H^\infty, f] = [H^\infty, f] \cap [H^\infty, g]$.

Proof. By Lemma 4.2,

$$M([H^\infty, f] \cap [H^\infty, g]) = M([H^\infty, f]) \cup M([H^\infty, g]).$$

By Lemma 2.2 and 4.1, $M([H^\infty, f]) \cup M([H^\infty, g])$ is a G_δ-subset of $M(H^\infty)$, so is $M([H^\infty, f] \cap [H^\infty, g])$. By Lemmas 2.2 and 4.1 again, there is $h \in L^\infty$ with $[H^\infty, h] = [H^\infty, f] \cap [H^\infty, g]$.

Lemma 4.4. Let f, g and h be functions in L^∞ with $[H^\infty, h] = [H^\infty, f] \cap [H^\infty, g]$. Then $N(h) = N(f) \cap N(g)$.

Proof. By our assumption, we have easily $N(h) \subset N(f) \cap N(g)$. Suppose that $N(h) \subsetneq N(f) \cap N(g)$. By Corollary 2.1, there is a QC-level set Q with $Q \subset N(f) \cap N(g)$ and $Q \cap N(h) = \emptyset$. Take a function q in QC such that

1. $0 \leq q \leq 1$ on X and $q = 0$ on $N(h)$,
2. $q = 1$ on some open neighborhood of Q.

By Lemma 4.2,

$$M([H^\infty, h]) = M([H^\infty, f]) \cup M([H^\infty, g]).$$

By (1) and (3), we have $f_q|\text{supp } \mu_x \in H^\infty|\text{supp } \mu_x$ or $g_q|\text{supp } \mu_x \in H^\infty|\text{supp } \mu_x$ for every $x \in M(H^\infty + C)$. By Theorem 2.1, we get $N(f_q) \cap N(g_q) = \emptyset$. By (2), $Q \cap N(f(1-q)) = \emptyset$. Since $N(f) = N(f_q) \cup N(f(1-q))$, $Q \subset N(f_q)$. Also we obtain $Q \subset N(gq)$. These contradict $N(f_q) \cap N(gq) = \emptyset$.

Proof of Theorem 4.1. By Lemmas 4.3 and 4.4, there is $F \in L^\infty$ such that $[H^\infty, F] = \bigcap_{n=1}^N [H^\infty, f_n]$ and $N(F) = \bigcap_{n=1}^N N(f_n)$. By Lemma 4.2 and our assumption, $F \in H^\infty + C$. Thus $N(F) = \emptyset$. This completes the proof.

We note that there is a sequence of functions $\{f_n\}_{n=1}^\infty$ in L^∞ such that

(a) for each x in $M(H^\infty + C)$, there exists n such that $f_n|\text{supp } \mu_x \in H^\infty|\text{supp } \mu_x$,

(b) $\bigcap_{n=1}^\infty N(f_n) \neq \emptyset$.

Example. Let $\lambda_n \in \partial D$ with $\lambda_n \to 1$ ($n \to \infty$), and let S_n be the singular inner function associated with the singular measure $\sum_{k=1}^\infty (1/2)^k \delta_{\lambda_k}$. We put $f_n = (z-1)S_n$, then $\{f_n\}_{n=1}^\infty$ satisfies (a). Since $N(f_n) \supset N(f_{n+1})$, we get $\bigcap_{n=1}^\infty N(f_n) \neq \emptyset$. We note that if $Q \subset \bigcap_{n=1}^\infty N(f_n)$ then $f_n|Q \in H^\infty |Q$ for every n, hence for each QC-level set Q there is n such that $f_n|Q \in H^\infty |Q$.

In the last part of this section, we give a result which relates to Corollary 2.6.
PROPOSITION 4.1. For every \(f \in L^\infty \) with \(N(f) \neq \emptyset \), there is a Douglas algebra \(B \) such that

(i) \(N(B) = N(f) \), and

(ii) \(B \) is not countably generated.

PROOF. Let \(Q \) be a QC-level set with \(f|Q \notin H^\infty|Q \). Put

\[B = [H^\infty, I; I \text{ is an inner function with } I \in [H^\infty, f] \text{ and } I|Q \in H^\infty|Q] \]

Then \(B \subset [H^\infty, f] \), so \(N(B) \subset N(f) \).

CLAIM. Put \(E = \bigcup \{ \text{supp } \mu_x; x \in M(H^\infty + C), f|\text{supp } \mu_x \notin H^\infty|\text{supp } \mu_x \text{ and supp } \mu_x \cap Q = \emptyset \} \). Then \(E \) is dense in \(N(f) \).

To show our claim, suppose not. Then \(\text{cl } E \nsubseteq \text{supp } \mu_y \) for some \(y \in M(H^\infty + C) \) such that \(f|\text{supp } \mu_y \notin H^\infty|\text{supp } \mu_y \) and \(\text{supp } \mu_y \subset Q \). Hence there is an open and closed subset \(U \) of \(X \) such that \(E \cap U = \emptyset \). By Lemma 2.6, \(Q_y \subset E(U) \). Thus \(N(f) \cap N(U) = \emptyset \). By Lemma 4.3, there is \(h \in L^\infty \) such that \([H^\infty, h] = [H^\infty, f] \cap [H^\infty, \chi_U] \). By Lemma 4.4, \(h \notin H^\infty + C \). By Lemma 3.2, there is \(\zeta \in M(H^\infty + C) \) with \(h|\text{supp } \mu_\zeta \notin H^\infty|\text{supp } \mu_\zeta \) and \(\text{supp } \mu_\zeta \cap Q = \emptyset \). By Lemma 4.2, both \(f|\text{supp } \mu_\zeta \) and \(\chi_U|\text{supp } \mu_\zeta \) are not contained in \(H^\infty|\text{supp } \mu_\zeta \). This contradicts the definitions of \(E \) and \(U \). Hence we get our claim.

To show (i), it is sufficient to prove \(E \subset N(B) \) by our claim. To prove this, let \(x \in M(H^\infty + C) \) such that \(f|\text{supp } \mu_x \notin H^\infty|\text{supp } \mu_x \) and \(\text{supp } \mu_x \cap Q = \emptyset \). Take a function \(q \in QC \) with \(q = 0 \) on \(Q \) and \(q = 1 \) on \(\text{supp } \mu_x \). Hence \(\text{supp } \mu_x \subset N(B) \), so \(E \subset N(B) \).

To show (ii), suppose not. Then \(B = [H^\infty, F] \) for some \(F \in [H^\infty, f] \). By Corollary 2.6, \([H^\infty, F] = [H^\infty, f] \). Since \(F|Q \in H^\infty|Q \), \(f|Q \in H^\infty|Q \). But this is a contradiction.

5. Discrete sequences in \(M(QC) \). A sequence \(\{y_n\}_{n=1}^\infty \) in a topological space \(Y \) is called discrete if there is a sequence of open subsets \(\{V_n\}_{n=1}^\infty \) of \(Y \) such that \(Y_n \in V_n \) and \(V_n \cap \text{cl } (\bigcup_{m \neq n} V_n) = \emptyset \). In this section, we study discrete sequences in \(M(QC) \) and show three theorems as applications of §2. The first one, Theorem 5.1, gives properties of a sequence of QC-level sets. In Theorem 5.2, we shall show the existence of a certain function in \(H^\infty \), which is motivated by [11]. Using them, we shall prove a theorem which is more precise than the one proved in [8, Theorem 2.1].

A QC-level set is called simple if it consists of only one point. It is not known whether there is a simple QC-level set or not. It is easy to see that a QC-level set \(Q \) is not simple if and only if there is \(x \in M(H^\infty + C) \) such that \(\text{supp } \mu_x \subset Q \). We note that every QC-level set in \(N(f) \), \(f \in L^\infty \), is not simple. Because, for a given \(f \in L^\infty \), there is an inner function \(I \) such that \(N(f) \subset N(I) \) (see the proof of Corollary 7 in [13]). By Lemma 3.1, \(N(I) \) does not contain any simple QC-level sets.

A discrete sequence \(\{y_n\}_{n=1}^\infty \) in \(M(QC) \) is called strongly discrete if each \(\pi^{-1}(y_n) \) is not simple.

THEOREM 5.1. Let \(\{y_n\}_{n=1}^\infty \) be a strongly discrete sequence in \(M(QC) \), and let \(y_0 \in M(QC) \) be its cluster point. Then

(i) \(\pi^{-1}(y_0) \) is not simple.

(ii) \(\pi^{-1}(y_0) \subset \text{cl } (\bigcup_{n=1}^\infty \pi^{-1}(y_n)) \).
(iii) If \(\{a_n\}_{n=1}^{\infty} \) is a bounded sequence of complex numbers, there is \(h \in QA \) such that \(h(y_n) = a_n \) for every \(n \).

PROOF. By our assumption, there is a sequence of open subsets \(\{V_n\}_{n=1}^{\infty} \) of \(M(QC) \) satisfying \(y_n \in V_n \) and

\[
V_n \cap \text{cl} \left(\bigcup_{m \neq n} V_m \right) = \emptyset.
\]

Let \(\{x_n\}_{n=1}^{\infty} \) be a sequence in \(M(H^{\infty} + C) \setminus X \) with \(\text{supp } \mu_{x_n} \subset \pi^{-1}(y_n) \). By [10, p. 177], there is an inner function \(\eta_n \) with

\[
\text{cl} \{y_n\}_{n=1}^{\infty} \subset \pi(N(F)).
\]

Thus \(\pi(N(F)) \) is a compact subset of \(M(QC) \), \(y_0 \in \pi(N(F)) \). By Corollary 2.1, \(\pi^{-1}(y_0) \subset N(F) \). By the remark before Theorem 5.1, we get (i).

To show (ii), suppose that \(\pi^{-1}(y_0) \not\subset \text{cl} \left(\bigcup_{n=1}^{\infty} \pi^{-1}(y_n) \right) \). There is an open and closed subset \(U \) of \(X \) such that \(U \cap \text{cl} \left(\bigcup_{n=1}^{\infty} \pi^{-1}(y_n) \right) = \emptyset \) and \(U \cap \pi^{-1}(y_0) \neq \emptyset \). Hence we may take a sequence of open subsets \(\{V_n\}_{n=1}^{\infty} \) satisfying moreover

\[
\pi^{-1}(U) \cap V_n = \emptyset.
\]

By the same way as (i), we have a function \(F = \sum_{n=1}^{\infty} (1/2)^n \tilde{T}_n q_n \). Let \(x \in M(H^{\infty} + C) \) with \(F|_{\text{supp } \mu_x} \notin H^{\infty}|_{\text{supp } \mu_x} \). Hence \(\text{supp } \mu_{x_n} \subset N(F) \), so \(y_n \in \pi(N(F)) \) for every \(n \). Thus \(\text{cl} \{y_n\}_{n=1}^{\infty} \subset \pi(N(F)) \). Since \(\pi(N(F)) \) is a compact subset of \(M(QC) \), \(y_0 \in \pi(N(F)) \). By Corollary 2.1, \(\pi^{-1}(y_0) \subset N(F) \). By the remark before Theorem 5.1, we get (i).

To show (ii), suppose that \(\pi^{-1}(y_0) \not\subset \text{cl} \left(\bigcup_{n=1}^{\infty} \pi^{-1}(y_n) \right) \). There is an open and closed subset \(U \) of \(X \) such that \(U \cap \text{cl} \left(\bigcup_{n=1}^{\infty} \pi^{-1}(y_n) \right) = \emptyset \) and \(U \cap \pi^{-1}(y_0) \neq \emptyset \). Hence we may take a sequence of open subsets \(\{V_n\}_{n=1}^{\infty} \) satisfying moreover

\[
\pi^{-1}(U) \cap V_n = \emptyset.
\]

By the same way as (i), we have a function \(F = \sum_{n=1}^{\infty} (1/2)^n \tilde{T}_n q_n \). Let \(x \in M(H^{\infty} + C) \) with \(F|_{\text{supp } \mu_x} \notin H^{\infty}|_{\text{supp } \mu_x} \). Then \(\tilde{T}_n q_n |_{\text{supp } \mu_x} \notin H^{\infty}|_{\text{supp } \mu_x} \) for some \(n \). By (3), \(\text{supp } \mu_x \subset N(F) \). Hence we have \(N(F) \subset X \setminus U \). Since \(\pi^{-1}(y_0) \subset N(F) \) by the proof of (i), we get \(\pi^{-1}(y_0) \cap U = \emptyset \). But this is a contradiction, so we get (ii).

(iii) Let \(F \) be a function in the proof of (i). By [23, Lemmas 2.2 and 2.3], \(m_0(\pi(N(F))) = 0 \) and \(\pi(N(F)) \) is an interpolation set for \(QA \), that is, \(QA|\pi(N(F)) = C(\pi(N(F))) \). Since \(\text{cl} \{y_n\}_{n=1}^{\infty} \subset \pi(N(F)) \), \(\text{cl} \{y_n\}_{n=1}^{\infty} \) is an interpolation set for \(QA \). To prove (iii), it is sufficient to show that \(\text{cl} \{y_{n_k}\}_{k=1}^{\infty} \cap \text{cl} \{\{y_n\}_{n=1}^{\infty} \setminus \{y_{n_k}\}_{k=1}^{\infty}\} = \emptyset \) for every subset \(\{y_{n_k}\}_{k=1}^{\infty} \) of \(\{y_n\}_{n=1}^{\infty} \) (see [10, p. 205]). To show this, put \(G = \sum_{k=1}^{\infty} (1/2)^k \tilde{T}_{n_k} q_{n_k} \) and \(H = F - G \). By our construction, \(G \) and \(H \) satisfy the assumption of Theorem 2.1, so we get \(N(G) \cap N(H) = \emptyset \). Thus \(\text{cl} \{y_{n_k}\}_{k=1}^{\infty} \subset \pi(N(G)) \) and \(\{y_n\}_{n=1}^{\infty} \setminus \{y_{n_k}\}_{k=1}^{\infty} \subset \pi(N(H)) \), we have

\[
\text{cl} \{y_{n_k}\}_{k=1}^{\infty} \cap \text{cl} \{\{y_n\}_{n=1}^{\infty} \setminus \{y_{n_k}\}_{k=1}^{\infty}\} \subset \pi(N(G)) \cap \pi(N(H)) = \emptyset.
\]

This completes the proof.

In [11], Hoffman showed that a discrete sequence \(\{y_n\}_{n=1}^{\infty} \) in \(X \) is an \(l^\infty \)-interpolation set for \(H^{\infty} \), that is, for every bounded sequence of complex numbers \(\{a_n\}_{n=1}^{\infty} \) there is \(h \in H^{\infty} \) such that \(h(y_n) = a_n \) for \(n = 1, 2, \ldots \). Using his technique, we shall show the existence of a certain function in \(H^{\infty} \).
LEMMA 5.1 [11]. Let K be a closed subset of X with $m(K) = 0$. Let g be a bounded continuous function on $X\setminus K$. Suppose that there is a bounded sequence \(\{f_n\}_{n=1}^{\infty} \) in H^∞ such that f_n converges to g uniformly on each compact subset of $X\setminus K$. Then there is $f \in H^\infty$ with $f|X\setminus K = g$.

THEOREM 5.2. Let $\{y_n\}_{n=1}^{\infty}$ be a strongly discrete sequence in $M(QC)$. Let $\{h_n\}_{n=1}^{\infty}$ be a bounded sequence in $H^\infty + C$. Then there exists a function F in H^∞ such that $F|\pi^{-1}(y_n)$ for every n.

PROOF. Suppose that $\|h_n\| < M$, where M is an absolute constant. Since $\pi^{-1}(y_n)$ is a weak peak set for H^∞ and $H^\infty + C|\pi^{-1}(y_n) = H^\infty|\pi^{-1}(y_n)$, there is $f_n \in H^\infty$ such that $f_n|\pi^{-1}(y_n) = h_n|\pi^{-1}(y_n)$ and $\|f_n\| < M$. Let $\{V_n\}_{n=1}^{\infty}$ be a sequence of open subsets of $M(QC)$ such that $y_n \in V_n$ and $V_n \cap \text{cl} \left(\bigcup_{m \neq n} V_m \right) = \emptyset$. Let W_0 be the interior of $\pi^{-1}(M(QC) \setminus \bigcup_{n=1}^{\infty} V_n)$. By [4, p. 18], $m(W_0) = m(\pi^{-1}(M(QC) \setminus \bigcup_{n=1}^{\infty} V_n))$. Put $K = (X\setminus W_0) \setminus \bigcup_{n=1}^{\infty} \pi^{-1}(V_n)$. Then K is a compact subset of X and $m(K) = 0$, because

\[
m(K) = 1 - m(\pi^{-1}(V_n)) \leq 1 - m(\bigcup_{n=1}^{\infty} \pi^{-1}(V_n)) = 1 - m(\pi^{-1}(M(QC) \setminus \bigcup_{n=1}^{\infty} V_n)) = 0.
\]

We may take a function q_n in QA satisfying

(1) $\|q_n\| = 1$, $q_n(y_n) = 1$ and $|q_n| < (1/2)^n$ on $M(QC) \setminus V_n$.

By (iii) of Theorem 5.1, we may assume that

(2) $q_{m}(y_n) = 0$ if $m \neq n$.

Put $G_N = \sum_{k=1}^{N} f_k q_k$. Then $G_N \in H^\infty$. We shall show that $\{G_N\}_{N=1}^{\infty}$ satisfies the assumption of Lemma 5.1 for K. By (1), we have

\[
|G_N| \leq |f_n| + \sum_{k \neq n} |f_k| |q_k| \leq M \left(1 + \sum_{k=1}^{\infty} \left(\frac{1}{2} \right)^k \right) \leq 2M,
\]

on $\pi^{-1}(V_n)$,

\[
|G_N| \leq M \left(\pi^{-1}(M(QC) \setminus \bigcup_{n=1}^{\infty} V_n) \right) \leq M \left(\pi^{-1}(M(QC) \setminus \bigcup_{n=1}^{\infty} V_n) \right) \leq M.
\]

Hence $\{G_N\}_{N=1}^{\infty}$ is a bounded sequence in H^∞. Let E be a compact subset of $X\setminus K$. Then $K \subset W_0 \cup \bigcup_{n=1}^{n_0} \pi^{-1}(V_k)$ for some n_0. For $n_0 \leq i < j$, we have

\[
|G_j - G_i| = \left| \sum_{k=i+1}^{j} f_k q_k \right| \leq M \left(\sum_{k=i+1}^{j} \left(\frac{1}{2} \right)^k \right) \leq M \left(\frac{1}{2} \right)^i \text{ on } W_0 \cup \bigcup_{k=1}^{n_0} \pi^{-1}(V_k).
\]
Hence \(\{ G_N \}_{N=1}^{\infty} \) converges to \(\sum_{k=1}^{\infty} f_k q_k \) uniformly on \(E \). By Lemma 5.1, there is a function \(G \) in \(H^\infty \) such that \(F = \sum_{k=1}^{\infty} f_k q_k \) on \(X \setminus K \). By (1) and (2), we get \(F|^{-1}(y_n) = f_n|^{-1}(y_n) = h_n|^{-1}(y_n) \).

A closed subset \(E \) of \(X \) is called antisymmetric for \(H^\infty \) if \(H^\infty|E \) does not contain any nonconstant real functions. An antisymmetric set is called maximal if there are no antisymmetric sets which contain \(E \) properly.

Theorem 5.3 (Cf. [8, Theorem 2.1]). Let \(\{ y_n \}_{n=1}^{\infty} \) be a strongly discrete sequence in \(M(QC) \). Let \(\{ \lambda_n \}_{n=1}^{\infty} \) be a sequence in \(X \) with \(\lambda_n \in \pi^{-1}(y_n) \). If \(\lambda_0 \) is a cluster point of \(\{ \lambda_n \}_{n=1}^{\infty} \) in \(X \), then \(\{ \lambda_0 \} \) is a maximal antisymmetric set for \(H^\infty \) and it is not a QC-level set.

Proof. Let \(\lambda_0 \) be a cluster point of \(\{ \lambda_n \}_{n=1}^{\infty} \) with \(\lambda_n \in \pi^{-1}(y_n) \). There is a QC-level set \(Q_0 \) with \(Q_0 \supseteq \lambda_0 \). Since \(\pi(Q_0) \in \text{cl} \{ y_n \}_{n=1}^{\infty} \), there is \(y_0 \in \text{cl} \{ y_n \}_{n=1}^{\infty} \) such that \(Q_0 = \pi^{-1}(y_0) \). By Theorem 5.1(i), \(Q_0 \) is not simple. We note that the maximal antisymmetric set containing \(y_0 \) is contained in \(Q_0 \). To show our assertion, let \(E \) be a closed subset with \(\{ y_0 \} \subseteq E \subseteq Q_0 \). We shall show that \(E \) is not antisymmetric. Take an open and closed subset \(U \) of \(X \) satisfying \(\lambda_0 \in U \) and \(E \subsetneq U \). By [1], there is \(h \in H^\infty + C \) such that \(|h| = \chi_U \) on \(X \). Using a function \(h \), we shall construct a function \(F \) in \(H^\infty \) such that

1. \(F = 1 \) on \(U \cap \{ \lambda_n \}_{n=1}^{\infty} \),
2. \(F = 0 \) on \(U^c \cap \pi^{-1}(y_n) \) for every \(n \), and
3. the sequence of ranges \(F(\pi^{-1}(y_n)) \) converges in \([-1, 1] \), that is, for every open subset \(W \) in the complex plane with \([-1, 1] \subset W \) there is \(n_0 \) such that \(F(\pi^{-1}(y_n)) \subset W \) for every \(n \geq n_0 \).

We let \(D_n \) denote the open ellipse with major axis \([-1, 1] \) and minor axis \([-i/n, i/n] \). Let \(\psi_n \) be a conformal mapping of \(D \) onto \(D_n \) such that \(\psi_n(0) = 0 \) and \(\psi_n(h(\lambda_n)) = 1 \) for every \(n \) with \(|h(\lambda_n)| = 1 \). We note that \(\psi_n \circ h \in H^\infty + C \) and \(\| \psi_n \circ h \| = 1 \) for every \(n \). By Theorem 5.2, there exists a function \(F \) in \(H^\infty \) such that \(F|^{-1}(y_n) = \psi_n \circ h|^{-1}(y_n) \). It is easy to see that \(F \) satisfies (1) and (2) and (3). Since \(\lambda_0 \in \text{cl} \{ \lambda_n \}_{n=1}^{\infty} \), \(F(\lambda_0) = 1 \) by (1). By Theorem 5.1(ii) and (2), \(F = 0 \) on \(U^c \cap \pi^{-1}(y_0) \). Also by Theorem 5.1(ii) and (3), \(F \) is a real function on \(\pi^{-1}(y_0) \). Thus \(F|E \in H^\infty|E \) is not a nonconstant real function. Hence \(E \) is not antisymmetric.

Remark. It is not true that a cluster point of discrete sequence \(\{ \lambda_n \}_{n=1}^{\infty} \) in \(X \) is a maximal antisymmetric set for \(H^\infty \). For, let \(x \in M(H^\infty + C) \setminus X \), then supp \(\mu_x \) is an antisymmetric set for \(H^\infty \). We may choose a sequence \(\{ \lambda_n \}_{n=1}^{\infty} \) in supp \(\mu_x \) which is discrete in \(X \). Then a cluster point of \(\{ \lambda_n \}_{n=1}^{\infty} \) is continued in supp \(\mu_x \).

6. **Singly generated Douglas algebras.** In this section, we answer the following problem given in [6, 19]; when is \([H^\infty, f], f \in L^\infty \), singly generated? The characterization of singly generated Douglas algebras in [14] does not answer the above problem explicitly. We want to know conditions on \(f \) satisfying that \([H^\infty, f] \) is singly generated.

For a point \(y \in M(QC) \) and \(f \in L^\infty \), we put

\[
\|f + H^\infty\|_y = \inf_{h \in H^\infty} \{ \sup_{x \in \pi^{-1}(y)} |f(x) + h(x)|; x \in \pi^{-1}(y) \}.
\]

By [23], the set \(\{ \|f + H^\infty\|_y; y \in M(QC) \} \) contains 0. First we shall prove the following proposition, which is interesting in its own right.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
PROPOSITION 6.1. For a given $f \in L^\infty$, the map $QC \ni y \mapsto \|f + H^\infty\|_y$ is upper semicontinuous.

PROOF. Let r be a real number. Let $\{y_\alpha\}_{\alpha \in \Lambda}$ be a net in $M(QC)$ such that

\begin{enumerate}
 \item $y_\alpha \to y_0 \in M(QC)$, \label{eq:1}
 \item $\|f + H^\infty\|_{y_\alpha} \geq r$ for every $\alpha \in \Lambda$. \label{eq:2}
\end{enumerate}

We shall show that $\|f + H^\infty\|_{y_0} \geq r$. Since $\pi^{-1}(y_\alpha)$ is a weak peak set for H^∞, by (2) there is a measure μ_α such that

\begin{enumerate}
 \item $\|\mu_\alpha\| = 1$ and $\text{supp} \mu_\alpha \subset \pi^{-1}(y_\alpha)$, \label{eq:3}
 \item $\int_X f \, d\mu_\alpha = \|f + H^\infty\|_{y_\alpha}$ and $\mu_\alpha \perp H^\infty$. \label{eq:4}
\end{enumerate}

Let μ_0 be a weak*-cluster point of $\{\mu_\alpha\}_{\alpha \in \Lambda}$, that is, $\int_X g \, d\mu_\alpha \to \int_X g \, d\mu_0$ for every $g \in C(X)$. Then $\|\mu_0\| \leq 1$. By (2) and (4), we have

$$\int_X f \, d\mu_0 \geq \inf_\alpha \int_X f \, d\mu_\alpha = \inf_\alpha \|f + H^\infty\|_{y_\alpha} \geq r.$$

We note that $\pi^{-1}(y_0)$ is also a weak peak set for QA. Let $h \in QA$ be any peaking function such that $\pi^{-1}(y_0) \subset \{x \in X; h(x) = 1\}$. Since h is constant on each QC-level set, we have $\int_X h \, d\mu_\alpha = h(y_\alpha) \int_X f \, d\mu_\alpha$ by (3). Thus

$$\int_X f \, d\mu_0 = \lim_\alpha h(y_\alpha) \int_X f \, d\mu_\alpha = \int_X f \, d\mu_0 \quad \text{by (1)}.$$

This shows that $\int_{\pi^{-1}(y_0)} f \, d\mu_0 = \int_X f \, d\mu_0 \geq r$. By [4, p. 58] and (4), we have $\mu_0|\pi^{-1}(y_0) \perp H^\infty$. Since $\|\mu_0\| \leq 1$, $\|f + H^\infty\|_{y_0} \geq r$. This completes the proof.

Our theorem is

THEOREM 6.1. Let $f \in L^\infty$. Then the following assertions are equivalent.

\begin{enumerate}
 \item $[H^\infty, f]$ is singly generated. \label{eq:i}
 \item $Q(f)$ is a closed subset of X, consequently $Q(f) = N(f)$. \label{eq:ii}
 \item In the set $\{\|f + H^\infty\|_y; y \in M(QC)\}$, 0 is an isolated point. \label{eq:iii}
\end{enumerate}

PROOF. (i) \Rightarrow (ii) follows from Lemma 3.1.

(ii) \Rightarrow (iii) Suppose that 0 is not isolated in the set $\{\|f + H^\infty\|_y; y \in M(QC)\}$. Then there is a sequence $\{y_n\}_{n=1}^\infty$ in $M(QC)$ such that $0 < \|f + H^\infty\|_{y_n} < 1/n$ for $n = 1, 2, \ldots$. Taking a subsequence, we may assume that $\{y_n\}_{n=1}^\infty$ is discrete in $M(QC)$. Since $0 < \|f + H^\infty\|_{y_n}$, $\pi^{-1}(y_n)$ is not simple. Thus $\{y_n\}_{n=1}^\infty$ is strongly discrete. Let $h_n \in H^\infty$ with

$$\sup\{|(f + h_n)(x)|; x \in \pi^{-1}(y_n)\} < 1/n. \quad \text{(1)}$$

Since $\pi^{-1}(y_n)$ is a weak peak set for H^∞, we may assume that $\{h_n\}_{n=1}^\infty$ is a bounded sequence in H^∞. By Theorem 5.2, there is $F \in H^\infty$ such that $F = h_n$ on $\pi^{-1}(y_n)$. By (1),

$$\sup\{|(f + F)(x)|; x \in \pi^{-1}(y_n)\} < 1/n. \quad \text{(2)}$$

Let $y_0 \in M(QC)$ be a cluster point of $\{y_n\}_{n=1}^\infty$. By Theorem 5.1, $\pi^{-1}(y_0) \subset \text{cl} (\bigcup_{n=1}^\infty \pi^{-1}(y_n)) \subset N(f)$. By (2), $(f + F)(x) = 0$ for $x \in \pi^{-1}(y_0)$. Thus $f|\pi^{-1}(y_0) \in H^\infty|\pi^{-1}(y_0)$, so $Q(f) \subset N(f)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(iii) ⇒ (i) Suppose that 0 is isolated in the set \(\{ \| f + H^\infty \|_y; y \in M(QC) \} \). Then there is \(\varepsilon > 0 \) such that

\[
\{ y \in M(QC); \| f + H^\infty \|_y \neq 0 \} = \{ y \in M(QC); \| f + H^\infty \|_y \geq \varepsilon \}.
\]

By Proposition 6.1, \(\{ y \in M(QC); \| f + H^\infty \|_y \neq 0 \} \) is a closed subset of \(M(QC) \). Hence \(\pi^{-1}\{ y \in M(QC); \| f + H^\infty \|_y \neq 0 \} = N(f) \) by Corollary 2.1. Let \(I \) be an inner function such that \(I \in [H^\infty, f] \) and \(\| If + H^\infty \| < \varepsilon \). We note that if \(y \in M(QC) \) satisfies \(\| If + H^\infty \|_y = 0 \), then \(\pi^{-1}(y) \subset N(I) \). For, if \(\pi^{-1}(y) \cap N(I) = \emptyset \) then \(\varepsilon \leq \| f + H^\infty \|_y = \| If + H^\infty \|_y < \varepsilon \). Hence \(N(f) \subset N(I) \). By Corollary 2.5, \(\pi^{-1}(y) = N(I) \).

The following corollary was proved by Marshall [19].

COROLLARY 6.1. \([H^\infty, \chi_U]\) is singly generated for every open and closed subset \(U \) of \(X \).

PROOF. We shall show that for \(y \in M(QC) \) either \(\| \chi_U + H^\infty \|_y = 1/2 \) or \(\| \chi_U + H^\infty \|_y = 0 \). It is easy to see that \(\| \chi_U + H^\infty \|_y \leq 1/2 \). Suppose \(\| \chi_U + H^\infty \|_y < 1/2 \). There is \(h \in H^\infty \) such that \(\sup_{x \in \pi^{-1}(y)} \| \chi_U(x) + h(x) \| < 1/2 \). Then there is a sequence of analytic polynomials \(\{ p_n \}_{n=1}^\infty \) such that \(p_n \circ h \to \chi_U \) uniformly on \(\pi^{-1}(y) \). Thus \(\| \chi_U + H^\infty \|_y = 0 \). By Theorem 6.1, we get our assertion.

We shall give an example concerning countable valued functions.

EXAMPLE. There exist two functions \(f \) and \(g \) in \(L^\infty \) such that

(a) \(f(X) = g(X) = \{ 0, 1/n; n = 1, 2, \ldots \} \),

(b) \([H^\infty, g]\) is not singly generated, and

(c) \([H^\infty, f]\) is singly generated.

PROOF. Let \(\{ O_n \}_{n=1}^\infty \) be a sequence of open arcs such that \(O_n = \{ e^{i\theta}; 1/n + 1 < \theta < 1/n \} \). Put \(U_n = \{ x \in X; \chi_{O_n}(x) = 1 \} \). Then \(U_n \) is an open and closed subset of \(X \). Put

\[
g = \begin{cases} \sum_{n=1}^\infty \frac{1}{n} \chi_{O_n} & \text{on } \bigcup_{n=1}^\infty O_n, \\ 0 & \text{on } \partial D \setminus \bigcup_{n=1}^\infty O_n. \end{cases}
\]

By the same way as the proof of Corollary 6.1,

\[
\{ \| g + H^\infty \|_y; y \in M(QC) \} = \{ 0, 1/2 \} \cup \{ (1/n - 1/n + 1)/2; n = 1, 2, \ldots \}.
\]

By Theorem 6.1, \(g \) satisfies (a) and (b). Put

\[
f = \begin{cases} \sum_{n=1}^\infty \frac{1}{n} \chi_{O_n} & \text{on } \bigcup_{n=1}^\infty O_{2n}, \\ 1 & \text{on } \partial D \setminus \bigcup_{n=1}^\infty O_{2n}. \end{cases}
\]

Then \(\{ \| f + H^\infty \|_y; y \in M(QC) \} = \{ (1 - 1/n)/2; n = 1, 2, \ldots \} \). By Theorem 6.1, \(f \) satisfies (a) and (c).

7. M-ideals. Let \(F \) be a weak peak subset of \(X \) for \(H^\infty + C \). We put \((H^\infty + C)_F = \{ f \in L^\infty; f|F \in H^\infty + C|F \} \). Then \((H^\infty + C)_F \) is a Douglas algebra. In [18], Luecking and Younis gave the following conjecture: Let \(B \) be a Douglas algebra such that \(B/H^\infty \) is an M-ideal of \(L^\infty/H^\infty \). Is \(B = (H^\infty + C)_F \) for some weak peak set \(F \) for \(H^\infty + C \)? We shall give a negative answer.
THEOREM 7.1. Let $E \subseteq X$ be a peak set for QC. Put

$$B = \{H^\infty, \{\overline{I}; I \text{ is an inner function with } N(\overline{I}) \subset E\}\}.$$

Then

(i) B/H^∞ is an M-ideal of L^∞/H^∞.

(ii) $B \neq (H^\infty + C)_F$ for every weak peak set F for $H^\infty + C$.

To show this, we need some lemmas.

LEMMA 7.1 [16, COROLLARY 5.1]. Let B be a Douglas algebra with $B \supseteq H^\infty + C$. Then B/H^∞ is an M-ideal of L^∞/H^∞ if and only if $B/H^\infty + C$ is an M-ideal of $L^\infty/H^\infty + C$.

The following lemma is a characterization of M-ideals of $L^\infty/H^\infty + C$, which is obtained by [5] essentially. For a Douglas algebra B, we denote by B_\perp the space of annihilating measures on X for B.

LEMMA 7.2 (SEE [16, THEOREM 5.1]). Let B be a Douglas algebra with $B \supseteq H^\infty + C$. Then $B/H^\infty + C$ is an M-ideal of $L^\infty/H^\infty + C$ if and only if for each $\overline{I} \in (H^\infty + C)_\perp$ there exists $f_\mu \in L^1(|\mu|)$ such that

(a) $\int f_\mu^2 d\mu = f_\mu$ a.e. $d|\mu|$,

(b) $\mu - f_\mu \perp B_\perp$, and

(c) $f_\mu \in B_\perp$.

For a subset E of X, we put $\Lambda_E = \{I; I \text{ is an inner function with } N(\overline{I}) \subset E\}$. As applications of Lemma 2.5 and Theorem 2.1, we get the following lemma.

LEMMA 7.3. Let $E \subseteq X$ be a peak set for QC. For a sequence of inner functions $\{I_n\}_{n=1}^\infty$ in Λ_E, there exists $I \in \Lambda_E$ such that $N(I_n) \subset N(I)$ for all n.

PROOF. Let $h \in QC$ be a peaking function for E. By Lemma 2.1, we may assume that each I_n is an interpolating Blaschke product with zeros $\{z_{n,k}\}_{k=1}^\infty$ and $\sum_{k=1}^\infty \sum_{n=1}^\infty (1 - |z_{n,k}|) < \infty$. Then $\prod_{n=1}^\infty I_n$ is a Blaschke product. Put $\psi = \prod_{n=1}^\infty I_n$ and $g = \psi(1 - h)$. Then

(1) $N(\psi) \setminus E \subset N(g)$.

To prove that $\{I_n\}_{n=1}^\infty$ and g satisfy the assumptions of Lemma 2.5, let $x \in M(H^\infty + C)$. Since E is a union set of some QC-level sets, $\mathrm{supp}\mu_x \subset E$ or $\mathrm{supp}\mu_x \cap E = \emptyset$. If $\mathrm{supp}\mu_x \subset E$, we get $0 = g|\mathrm{supp}\mu_x \subset H^\infty|\mathrm{supp}\mu_x$. If $\mathrm{supp}\mu_x \cap E = \emptyset$, then $I_n|\mathrm{supp}\mu_x \subset H^\infty|\mathrm{supp}\mu_x$ for all n, because $I_n \in \Lambda_E$. By Lemma 2.5, there is a Blaschke product \overline{I} such that

(2) $N(\overline{I}) \subset N(\psi)$,

(3) either $\overline{I}|\mathrm{supp}\mu_x \subset H^\infty|\mathrm{supp}\mu_x$ or $g|\mathrm{supp}\mu_x \subset H^\infty|\mathrm{supp}\mu_x$ for every $x \in M(H^\infty + C)$, and

(4) $N(\overline{I}_n) \subset N(\overline{I})$ for all n.

By (3), applying Theorem 2.1, we get $N(\overline{I}) \cap N(g) = \emptyset$. Hence, by (1) and (2), $N(\overline{I}) \subset E$, so $I \in \Lambda_E$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
LEMMA 7.4 [13, LEMMA 3]. Let E be a closed $G_δ$-subset of X. Then there is an inner function I with $φ \neq N(\overline{I}) \subset E$.

LEMMA 7.5. Let $ν$ be a measure on X with $ν \in (H^\infty + C)^\perp$. If J is an inner function with $Jν \not\in (H^\infty + C)^\perp$, then $|ν|(N(\overline{J})) \neq 0$.

PROOF. Suppose that $|ν|(N(\overline{J})) = 0$. Then there is a sequence of compact subsets $\{K_n\}_{n=1}^\infty$ of X such that $\lim_{n \to \infty} |ν|(K_n) = |ν|$ and $K_n \cap N(\overline{J}) = \emptyset$. Since $π^{-1}(π(N(\overline{J}))) = N(\overline{J})$, moreover we may assume $π^{-1}(π(K_n)) = K_n$. Then K_n is a weak peak set for QC and for $H^\infty + C$. Hence $ν|K_n \in (H^\infty + C)^\perp$ [4, p. 58]. Since $K_n \cap N(\overline{J}) = \emptyset$, $J|K_n \in (H^\infty + C)|K_n$. Hence $J\nu|K_n \in (H^\infty + C)^\perp$. Since $lim_{n \to \infty} |ν|(K_n) = |ν|$, $J\nu \in (H^\infty + C)^\perp$. But this is a contradiction.

LEMMA 7.6 [16, THEOREM 2.1]. Let B be a Douglas algebra with $B \supset H^\infty + C$. Let $λ$ be a measure on X with $λ \in B^\perp$. If $ν$ is a measure with $ν \ll λ$, then there is an inner function I such that $Iν \in B^\perp$.

PROOF OF THEOREM 7.1. (i) By Lemma 7.4, $H^\infty + C \subsetneq B$. We shall show that $B/H^\infty + C$ is an M-ideal of $L^\infty/H^\infty + C$, then we get (i) by Lemma 7.1. To show the above fact, we use Lemma 7.2. Let $μ \in (H^\infty + C)^\perp$ with $|μ| = 1$. Put $α = \sup\{μ|N(\overline{I})|; I \in \Lambda_E\}$. Then there is a sequence $\{I_n\}_{n=1}^\infty$ in Λ_E such that $lim_{n \to \infty} |μ|(N(\overline{I}_n)) = α$. By Lemma 7.3, there is $I_0 \in \Lambda_E$ such that $N(\overline{I}_n) \subset N(\overline{I}_0)$. Hence $|μ|(N(\overline{I}_0)) = α$. Put $f_μ = 1 - \chi_{N(\overline{I}_0)}$. Then $f_μ$ satisfies (a) of Lemma 7.2. Also by Lemma 7.3,

\[|f_μ(\overline{I})| = 0 \quad \text{for every } I \in λ_E. \]

To show $f_μμ \in B^\perp$, suppose that $f_μμ \not\in B^\perp$. Since B coincides with the closed linear span of $\{\overline{I}(H^\infty + C); I \in \Lambda_E\}$, there is $J \in \Lambda_E$ such that $Jf_μμ \not\in (H^\infty + C)^\perp$. We note that $f_μμ \in (H^\infty + C)^\perp$, because $N(\overline{I}_0)$ is a weak peak set for $H^\infty + C$ by Corollary 2.1. By Lemma 7.5, $|f_μμ|(N(\overline{J})) \neq 0$. But this contradicts (1). Thus we get (c) of Lemma 7.2.

To prove (b), we shall show

(2) $λ | N(\overline{I}) = 0 \quad \text{for every } λ \in B^\perp \text{ and } I \in \Lambda_E$. Fix $λ \in B^\perp$ and $I \in \Lambda_E$. By Lemma 7.6, there is an inner function $Ψ$ such that

\[Ψ|λ| | N(\overline{I}) \in B^\perp. \]

Let $h \in QC$ be a peaking function for E. We note that for $x \in M(H^\infty + C)$, either $\overline{I} | supp μ_x \in H^\infty | supp μ_x$ or $Ψ(1-h) | sup supp μ_x \in H^\infty | supp μ_x$, because $N(\overline{I}) \subset E$. By Theorem 2.1, $N(\overline{I}) \cap N(Ψ(1-h)) = \emptyset$. By Corollary 2.1, there is a function q in QC such that $0 \leq q \leq 1$,

\[q = 1 \quad \text{on } N(\overline{I}) \quad \text{and} \quad q = 0 \quad \text{on } N(Ψ(1-h)). \]

If $qΨ|supp μ_x \not\in H^\infty |supp μ_x$ for $x \in M(H^\infty + C)$, then $q(x) \neq 0$ and $Ψ|supp μ_x \not\in H^\infty |supp μ_x$. Since $h \in QC$, $h(x) = 1$ by (4). Hence $supp μ_x \subset E$, so $N(qΨ) \subset E$. By Lemma 2.2, there is a sequence of inner functions $\{Ψ_n\}_{n=1}^\infty$ such that $[H^\infty, qΨ] = [H^\infty, \{Ψ_n\}_{n=1}^\infty]$. Since $N(Ψ_n) \subset N(qΨ) \subset E$, we get $[H^\infty, qΨ] \subset B$. By (3) and (4),

\[0 = \int_{N(\overline{I})} qΨΨd|λ| = \int_{N(\overline{I})} d|λ|. \]
Hence \(\lambda |N(\overline{I}) = 0 \). Thus we get (2). Consequently \(\mu - f_\mu \mu = \mu |N(\overline{I}_0) \perp B_\perp \), so we get (b) of Lemma 7.2.

Applying Lemma 7.2, \(B/H^\infty + C \) is an \(M \)-ideal of \(L^\infty /H^\infty + C \). This completes the proof of (i).

(ii) Suppose that \(B = (H^\infty + C)_F \) for a weak peak subset of \(X \) for \(H^\infty + C \). To show \(F \supset X \setminus E \), suppose not. Then there exists an open and closed subset \(U \) of \(X \) with \(U \cap (E \cup F) = \emptyset \). By Lemma 7.4, there is an inner function \(I \) with \(\emptyset \neq N(\overline{I}) \subset U \). Then there is \(x \in M(H^\infty + C) \backslash X \) such that \(\text{supp} \mu_x \subset U \). Since \(\text{supp} \mu_x \cap E = \emptyset \), \(B|\text{supp} \mu_x = H^\infty|\text{supp} \mu_x \). Since \(\text{supp} \mu_x \cap F = \emptyset \), \((H^\infty + C)_F|\text{supp} \mu_x \) coincides with the space of continuous functions on \(\text{supp} \mu_x \). This is a contradiction, so we have \(F \supset X \setminus E \).

Let \(V \) be the closure of \(X \setminus E \). By [4, p. 18], \(V \) is an open and closed subset of \(X \) and \(V \subset F \). Since \(QC \) does not have nontrivial idempotents, \(E \cap V \neq \emptyset \). Since \(E \cap V \) is a closed \(G_\delta \)-set, again by Lemma 7.4 there is an inner function \(J \) with \(\emptyset \neq N(\overline{J}) \subset E \cap V \). By the definition of \(B \), \(J \in B \). Since \(N(\overline{J}) \subset V \subset F \), \(J \notin (H^\infty + C)_F \). This contradicts \(B = (H^\infty + C)_F \). Hence we get (ii).

REMARK. Let \(B \) be a Douglas algebra given in Theorem 7.1. By the above proof and [4, p. 59], \(N(I) \) is an interpolation set for \(B \) for every \(I \in \Lambda_E \), that is, \(B|N(\overline{I}) = C(N(\overline{I})) \).

COROLLARY 7.1. Let \(B \) be a Douglas algebra given in Theorem 7.1. Then \(B \) has the best approximation property, that is, for each \(f \in L^\infty \) there is \(g \in B \) such that \(\| f + B \| = \| f - g \| \).

As a special case, we get Proposition 2 in [18]. Let \(F \) be an open subset of \(\partial D \). Put \(L^\infty_F = \{ f \in L^\infty ; f \text{ is continuous at each point of } F \} \), and \(E = \{ x \in X ; z(x) \in X \setminus F \} \). Then \(E \) is a peak set for \(QC \), and it is easy to see that \(H^\infty + L^\infty_F = [H^\infty, \{ \overline{I} ; I \text{ is an inner function with } N(\overline{I}) \subset E \}] \). Hence \(H^\infty + L^\infty_F \) has the best approximation property.

REFERENCES

11. ———, unpublished note.

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, YOKOHAMA 221, JAPAN