Countably generated Douglas algebras

Author:
Keiji Izuchi

Journal:
Trans. Amer. Math. Soc. **299** (1987), 171-192

MSC:
Primary 46J15; Secondary 30D55, 30H05

MathSciNet review:
869406

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Under a certain assumption of and in which is considered by Sarason, a strong separation theorem is proved. This is available to study a Douglas algebra generated by and . It is proved that (1) ball does not have exposed points for every Douglas algebra , (2) Sarason's three functions problem is solved affirmatively, (3) some characterization of for which is singly generated, and (4) the -ideal conjecture for Douglas algebras is not true.

**[1]**Sheldon Axler,*Factorization of 𝐿^{∞} functions*, Ann. of Math. (2)**106**(1977), no. 3, 567–572. MR**0461142****[2]**Sheldon Axler, I. David Berg, Nicholas Jewell, and Allen Shields,*Approximation by compact operators and the space 𝐻^{∞}+𝐶*, Ann. of Math. (2)**109**(1979), no. 3, 601–612. MR**534765**, 10.2307/1971228**[3]**Sun Yung A. Chang,*A characterization of Douglas subalgebras*, Acta Math.**137**(1976), no. 2, 82–89. MR**0428044****[4]**Theodore W. Gamelin,*Uniform algebras*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1969. MR**0410387****[5]**T. W. Gamelin, D. E. Marshall, R. Younis, and W. R. Zame,*Function theory and 𝑀-ideals*, Ark. Mat.**23**(1985), no. 2, 261–279. MR**827346**, 10.1007/BF02384429**[6]**John B. Garnett,*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971****[7]**P. Gorkin,*Decompositions of the maximal ideal space of*, Thesis, Michigan State Univ., East Lansing, 1982.**[8]**Pamela Gorkin,*Decompositions of the maximal ideal space of 𝐿^{∞}*, Trans. Amer. Math. Soc.**282**(1984), no. 1, 33–44. MR**728701**, 10.1090/S0002-9947-1984-0728701-1**[9]**Carroll Guillory, Keiji Izuchi, and Donald Sarason,*Interpolating Blaschke products and division in Douglas algebras*, Proc. Roy. Irish Acad. Sect. A**84**(1984), no. 1, 1–7. MR**771641****[10]**Kenneth Hoffman,*Banach spaces of analytic functions*, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR**0133008****[11]**-, unpublished note.**[12]**Keiji Izuchi,*Zero sets of interpolating Blaschke products*, Pacific J. Math.**119**(1985), no. 2, 337–342. MR**803123****[13]**Keiji Izuchi,*𝑄𝐶-level sets and quotients of Douglas algebras*, J. Funct. Anal.**65**(1986), no. 3, 293–308. MR**826428**, 10.1016/0022-1236(86)90020-0**[14]**Keiji Izuchi,*A geometrical characterization of singly generated Douglas algebras*, Proc. Amer. Math. Soc.**97**(1986), no. 3, 410–412. MR**840620**, 10.1090/S0002-9939-1986-0840620-6**[15]**Keiji Izuchi and Yuko Izuchi,*Extreme and exposed points in quotients of Douglas algebras by 𝐻^{∞} or 𝐻^{∞}+𝐶*, Yokohama Math. J.**32**(1984), no. 1-2, 45–54. MR**772904****[16]**Keiji Izuchi and Yuko Izuchi,*Annihilating measures for Douglas algebras*, Yokohama Math. J.**32**(1984), no. 1-2, 135–151. MR**772911****[17]**Daniel H. Luecking,*The compact Hankel operators form an 𝑀-ideal in the space of Hankel operators*, Proc. Amer. Math. Soc.**79**(1980), no. 2, 222–224. MR**565343**, 10.1090/S0002-9939-1980-0565343-7**[18]**Daniel H. Luecking and Rahman M. Younis,*Quotients of 𝐿^{∞} by Douglas algebras and best approximation*, Trans. Amer. Math. Soc.**276**(1983), no. 2, 699–706. MR**688971**, 10.1090/S0002-9947-1983-0688971-4**[19]**Donald E. Marshall,*Subalgebras of 𝐿^{∞} containing 𝐻^{∞}*, Acta Math.**137**(1976), no. 2, 91–98. MR**0428045****[20]**Donald Sarason,*Functions of vanishing mean oscillation*, Trans. Amer. Math. Soc.**207**(1975), 391–405. MR**0377518**, 10.1090/S0002-9947-1975-0377518-3**[21]**Donald Sarason,*Function theory on the unit circle*, Virginia Polytechnic Institute and State University, Department of Mathematics, Blacksburg, Va., 1978. Notes for lectures given at a Conference at Virginia Polytechnic Institute and State University, Blacksburg, Va., June 19–23, 1978. MR**521811****[22]**Donald Sarason,*The Shilov and Bishop decompositions of 𝐻^{∞}+𝐶*, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 461–474. MR**730085****[23]**Thomas H. Wolff,*Two algebras of bounded functions*, Duke Math. J.**49**(1982), no. 2, 321–328. MR**659943****[24]**Rahman Younis,*Division in Douglas algebras and some applications*, Arch. Math. (Basel)**45**(1985), no. 6, 555–560. MR**818297**, 10.1007/BF01194897

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
46J15,
30D55,
30H05

Retrieve articles in all journals with MSC: 46J15, 30D55, 30H05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0869406-9

Article copyright:
© Copyright 1987
American Mathematical Society