On embedding of group rings of residually torsion free nilpotent groups into skew fields
Authors:
A. Eizenbud and A. I. Lichtman
Journal:
Trans. Amer. Math. Soc. 299 (1987), 373386
MSC:
Primary 16A27; Secondary 16A08, 16A39, 20C07
MathSciNet review:
869417
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is proven that the group ring of an amalgamated free product of residually torsion free nilpotent groups is a domain and can be embedded in a skew field. This is a generalization of J. Lewin's theorem, proven for the case of free groups. Our proof is based on the study of the MalcevNeumann power series ring of a residually torsion free nilpotent group . It is shown that its subfield , generated by the group ring , does not depend on the order of for many kinds of orders and the study of can be reduced in some sense to the case when is nilpotent.
 [1]
Jacques
Lewin, Fields of fractions for group algebras
of free groups, Trans. Amer. Math. Soc. 192 (1974), 339–346.
MR
0338055 (49 #2822), http://dx.doi.org/10.1090/S00029947197403380554
 [2]
P.
M. Cohn, On the free product of associative rings. III, J.
Algebra 8 (1968), 376–383. MR 0222118
(36 #5170)
 [3]
P.
M. Cohn, The embedding of firs in skew fields, Proc. London
Math. Soc. (3) 23 (1971), 193–213. MR 0297814
(45 #6866)
 [4]
Jacques
Lewin and Tekla
Lewin, An embedding of the group algebra of a torsionfree
onerelator group in a field, J. Algebra 52 (1978),
no. 1, 39–74. MR 0485972
(58 #5764)
 [5]
P.
M. Cohn, Free rings and their relations, Academic Press,
London, 1971. London Mathematical Society Monographs, No. 2. MR 0371938
(51 #8155)
 [6]
Peter
Malcolmson, A prime matrix ideal yields a skew field, J.
London Math. Soc. (2) 18 (1978), no. 2,
221–233. MR
509937 (80d:16003), http://dx.doi.org/10.1112/jlms/s218.2.221
 [7]
A.
I. Lichtman, On normal subgroups of multiplicative group of skew
fields generated by a polycyclicbyfinite group, J. Algebra
78 (1982), no. 2, 548–577. MR 680374
(84f:16016), http://dx.doi.org/10.1016/00218693(82)900953
 [8]
A.
I. Lichtman, On linear groups over a field of fractions of a
polycyclic group ring, Israel J. Math. 42 (1982),
no. 4, 318–326. MR 682316
(84d:20050), http://dx.doi.org/10.1007/BF02761413
 [9]
A.
I. Lichtman, Matrix rings and linear groups over a field of
fractions of enveloping algebras and group rings. I, J. Algebra
88 (1984), no. 1, 1–37. MR 741929
(85c:17006), http://dx.doi.org/10.1016/00218693(84)900875
 [10]
A.
I. Lichtman, On matrix rings and linear groups over fields of
fractions of group rings and enveloping algebras. II, J. Algebra
90 (1984), no. 2, 516–527. MR 760026
(86a:16019), http://dx.doi.org/10.1016/00218693(84)90187X
 [11]
A.
I. Lichtman, Free subgroups in linear groups over some skew
fields, J. Algebra 105 (1987), no. 1,
1–28. MR
871744 (88a:20063), http://dx.doi.org/10.1016/00218693(87)901773
 [12]
Donald
S. Passman, The algebraic structure of group rings, Pure and
Applied Mathematics, WileyInterscience [John Wiley & Sons], New York,
1977. MR
470211 (81d:16001)
 [13]
A.
I. Mal′cev, Generalized nilpotent algebras and their
associated groups, Mat. Sbornik N.S. 25(67) (1949),
347–366 (Russian). MR 0032644
(11,323b)
 [14]
A. G. Kurosh, The theory of groups, Chelsea, New York, 1956.
 [1]
 J. Lewin, Fields of fractions for group algebras of free groups, Trans. Amer. Math. Soc. 190 (1974), 339346. MR 0338055 (49:2822)
 [2]
 P. M. Cohn, On the free products of associative rings. III, J. Algebra 8 (1968), 376383. MR 0222118 (36:5170)
 [3]
 , The embeddings of firs in skew fields, Proc. London Math. Soc. (3) 23 (1971), 193213. MR 0297814 (45:6866)
 [4]
 J. Lewin and T. Lewin, An embedding of the group algebra of a torsion free one relator group in a field, J. Algebra 52 (1978), 3979. MR 0485972 (58:5764)
 [5]
 P. M. Cohn, Free rings and their relations, Academic Press, New York, 1971. MR 0371938 (51:8155)
 [6]
 P. Malcolmson, A prime matrix ideal yields a skew field, J. London Math. Soc. 18 (1978), 221233. MR 509937 (80d:16003)
 [7]
 A. I. Lichtman, On normal subgroups of multiplicative groups of skew fields generated by a polycyclicbyfinite group, J. Algebra 78 (1982), 548577. MR 680374 (84f:16016)
 [8]
 , On linear groups over a field of fractions of a polycyclic group ring, Israel Math. J. 42 (1982), 318326. MR 682316 (84d:20050)
 [9]
 , On matrix rings and linear groups over a field of fractions of enveloping algebras and group rings. I, J. Algebra 88 (1984), 137. MR 741929 (85c:17006)
 [10]
 , On matrix rings and linear groups over a field of fractions of enveloping algebras and group rings. II, J. Algebra 90 (1984), 516526. MR 760026 (86a:16019)
 [11]
 , Free subgroups in linear groups over some skew fields, J. Algebra (to appear). MR 871744 (88a:20063)
 [12]
 D. S. Passman, The algebraic structure of group rings, WileyInterscience, New York, 1977. MR 470211 (81d:16001)
 [13]
 A. I. Malcev, Generalized nilpotent algebras and their adjoint groups, Mat. Sb. 25 (67) (1949), 347366: English transl., Amer. Math. Soc. Transl. 69 (1968), 723. MR 0032644 (11:323b)
 [14]
 A. G. Kurosh, The theory of groups, Chelsea, New York, 1956.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
16A27,
16A08,
16A39,
20C07
Retrieve articles in all journals
with MSC:
16A27,
16A08,
16A39,
20C07
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198708694173
PII:
S 00029947(1987)08694173
Keywords:
Group rings,
skew fields,
free products,
ordered groups,
residually nilpotent groups
Article copyright:
© Copyright 1987 American Mathematical Society
