On embedding of group rings of residually torsion free nilpotent groups into skew fields

Authors:
A. Eizenbud and A. I. Lichtman

Journal:
Trans. Amer. Math. Soc. **299** (1987), 373-386

MSC:
Primary 16A27; Secondary 16A08, 16A39, 20C07

MathSciNet review:
869417

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proven that the group ring of an amalgamated free product of residually torsion free nilpotent groups is a domain and can be embedded in a skew field. This is a generalization of J. Lewin's theorem, proven for the case of free groups. Our proof is based on the study of the Malcev-Neumann power series ring of a residually torsion free nilpotent group . It is shown that its subfield , generated by the group ring , does not depend on the order of for many kinds of orders and the study of can be reduced in some sense to the case when is nilpotent.

**[1]**Jacques Lewin,*Fields of fractions for group algebras of free groups*, Trans. Amer. Math. Soc.**192**(1974), 339–346. MR**0338055**, 10.1090/S0002-9947-1974-0338055-4**[2]**P. M. Cohn,*On the free product of associative rings. III*, J. Algebra**8**(1968), 376–383. MR**0222118****[3]**P. M. Cohn,*The embedding of firs in skew fields*, Proc. London Math. Soc. (3)**23**(1971), 193–213. MR**0297814****[4]**Jacques Lewin and Tekla Lewin,*An embedding of the group algebra of a torsion-free one-relator group in a field*, J. Algebra**52**(1978), no. 1, 39–74. MR**0485972****[5]**P. M. Cohn,*Free rings and their relations*, Academic Press, London-New York, 1971. London Mathematical Society Monographs, No. 2. MR**0371938****[6]**Peter Malcolmson,*A prime matrix ideal yields a skew field*, J. London Math. Soc. (2)**18**(1978), no. 2, 221–233. MR**509937**, 10.1112/jlms/s2-18.2.221**[7]**A. I. Lichtman,*On normal subgroups of multiplicative group of skew fields generated by a polycyclic-by-finite group*, J. Algebra**78**(1982), no. 2, 548–577. MR**680374**, 10.1016/0021-8693(82)90095-3**[8]**A. I. Lichtman,*On linear groups over a field of fractions of a polycyclic group ring*, Israel J. Math.**42**(1982), no. 4, 318–326. MR**682316**, 10.1007/BF02761413**[9]**A. I. Lichtman,*Matrix rings and linear groups over a field of fractions of enveloping algebras and group rings. I*, J. Algebra**88**(1984), no. 1, 1–37. MR**741929**, 10.1016/0021-8693(84)90087-5**[10]**A. I. Lichtman,*On matrix rings and linear groups over fields of fractions of group rings and enveloping algebras. II*, J. Algebra**90**(1984), no. 2, 516–527. MR**760026**, 10.1016/0021-8693(84)90187-X**[11]**A. I. Lichtman,*Free subgroups in linear groups over some skew fields*, J. Algebra**105**(1987), no. 1, 1–28. MR**871744**, 10.1016/0021-8693(87)90177-3**[12]**Donald S. Passman,*The algebraic structure of group rings*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR**470211****[13]**A. I. Mal′cev,*Generalized nilpotent algebras and their associated groups*, Mat. Sbornik N.S.**25(67)**(1949), 347–366 (Russian). MR**0032644****[14]**A. G. Kurosh,*The theory of groups*, Chelsea, New York, 1956.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16A27,
16A08,
16A39,
20C07

Retrieve articles in all journals with MSC: 16A27, 16A08, 16A39, 20C07

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0869417-3

Keywords:
Group rings,
skew fields,
free products,
ordered groups,
residually nilpotent groups

Article copyright:
© Copyright 1987
American Mathematical Society