Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ K$-theory and multipliers of stable $ C\sp \ast$-algebras


Author: J. A. Mingo
Journal: Trans. Amer. Math. Soc. 299 (1987), 397-411
MSC: Primary 46L80; Secondary 18F25, 19K56, 46M20
DOI: https://doi.org/10.1090/S0002-9947-1987-0869419-7
MathSciNet review: 869419
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main theorem is that if $ A$ is a $ C^{\ast}$-algebra with a countable approximate identity consisting of projections, then the unitary group of $ M(A \otimes K)$ is contractible. This gives a realization, via the index map, of $ {K_0}(A)$ as components in the set of Fredholm operators on $ {H_A}$.


References [Enhancements On Off] (What's this?)

  • [1] H. Araki, M-S. B. Smith and L. Smith, On the homotopical significance of the type of a von Neumann algebra, Comm. Math. Phys. 22 (1971), 71-88. MR 0288587 (44:5783)
  • [2] M. Atiyah, $ K$-theory, Benjamin, New York, 1967. MR 0224083 (36:7130)
  • [3] B. Blackadar and D. Handelman, Dimension functions and traces on $ C^{\ast}$-algebras, J. Funct. Anal. 45 (1982), 297-340. MR 650185 (83g:46050)
  • [4] M. Breuer, On the homotopy type of the group of regular elements of semifinite von Neumann algebras, Math. Ann. 185 (1970), 61-74. MR 0264408 (41:9003)
  • [5] J. Brüning and W. Willgerodt, Eine Verallgemeinerung eines Satzes von N. Kuiper, Math. Ann. 222 (1976), 47-58. MR 0405483 (53:9276)
  • [6] R. C. Busby, Double centralizers and extensions of $ C^{\ast}$-algebras, Trans. Amer. Math. Soc. 132 (1968), 79-99. MR 0225175 (37:770)
  • [7] A. Connes, An analogue of the Thom isomorphism for crossed products of a $ C^{\ast}$-algebra by an action of $ {\mathbf{R}}$, Adv. in Math. 39 (1981), 31-55. MR 605351 (82j:46084)
  • [8] E. G. Effros and E. C. Lance, Tensor products of operator algebras, Adv. in Math. 25 (1977), 1-34. MR 0448092 (56:6402)
  • [9] G. A. Elliott, Derivations of matroid $ C^{\ast}$-algebras. II, Ann. of Math. (2) 100 (1974), 407-422. MR 0352999 (50:5485)
  • [10] K. R. Goodearl and D. Handelman, Stenosis in dimension groups and AF $ C^{\ast}$-algebras, J. Reine Agnew. Math. 332 (1982), 1-98. MR 656856 (83m:46101)
  • [11] G. G. Kasparov, Hilbert $ C^{\ast}$-modules; Theorems of Stinespring and Voiculescu, J. Operator Theory 4 (1980), 133-150. MR 587371 (82b:46074)
  • [12] -, The operator $ K$-functor and extensions of $ C^{\ast}$-algebras, Izv. Akad. Nauk SSSR 44 (1980), 571-636; English transl., Math. USSR Izv. 16 (1981), 513-572. MR 582160 (81m:58075)
  • [13] N. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19-30. MR 0179792 (31:4034)
  • [14] J. A. Mingo, On the contractibility of the unitary group of the Hilbert space over a $ C^{\ast}$-algebra, J. Integral Equations Operator Theory 5 (1982), 888-891. MR 682305 (84c:58008)
  • [15] A. S. Miščenko and A. T. Fomenko, The index of elliptic operators over $ C^{\ast}$-algebras, Izv. Akad. Nauk SSSR 43 (1979), 831-859; English transl., Math. USSR Izv. 15 (1980), 87-112. MR 548506 (81i:46075)
  • [16] G. K. Pedersen, $ C^{\ast}$-algebras and their automorphism groups, Academic Press, London, 1979. MR 548006 (81e:46037)
  • [17] M. Pimsner, S. Popa and D. Voiculescu, Homogeneous extensions of $ C(X) \otimes K(H)$. II, J. Operator Theory 4 (1980), 211-249. MR 595413 (82e:46093b)
  • [18] G. Segal, Equivariant contractibility of the general linear group of Hilbert space, Bull. London Math. Soc. 1 (1969), 329-331. MR 0248877 (40:2127)
  • [19] J. Taylor, Banach algebras and topology, Algebras and Analysis (J. H. Williamson, ed.), Academic Press, London, 1975. MR 0417789 (54:5837)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L80, 18F25, 19K56, 46M20

Retrieve articles in all journals with MSC: 46L80, 18F25, 19K56, 46M20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0869419-7
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society