The dimension of closed sets in the Stone-Čech compactification

Author:
James Keesling

Journal:
Trans. Amer. Math. Soc. **299** (1987), 413-428

MSC:
Primary 54D35; Secondary 54D40, 54F45

MathSciNet review:
869420

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper properties of compacta in are studied for Lindelöf spaces . If , then there is a mapping such that is onto and every mapping homotopic to is onto. This implies that there is an essential family for consisting of disjoint pairs of closed sets. It also implies that if with each closed, then there is a such that .

Assume is a compactum in as above. Then if , there is a closed set in such that and such that every nonempty -set in contains an -dimensional compactum. This holds for finite or infinite. If and with each closed, then there must be a such that .

**[1]**Allan Calder and Jerrold Siegel,*Homotopy and uniform homotopy*, Trans. Amer. Math. Soc.**235**(1978), 245–270. MR**0458416**, 10.1090/S0002-9947-1978-0458416-6**[2]**Allan Calder and Jerrold Siegel,*Homotopy and uniform homotopy. II*, Proc. Amer. Math. Soc.**78**(1980), no. 2, 288–290. MR**550515**, 10.1090/S0002-9939-1980-0550515-8**[3]**Ryszard Engelking,*Dimension theory*, North-Holland Publishing Co., Amsterdam-Oxford-New York; PWN—Polish Scientific Publishers, Warsaw, 1978. Translated from the Polish and revised by the author; North-Holland Mathematical Library, 19. MR**0482697****[4]**Leonard Gillman and Meyer Jerison,*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0116199****[5]**William E. Haver,*Locally contractible spaces that are absolute neighborhood retracts*, Proc. Amer. Math. Soc.**40**(1973), 280–284. MR**0331311**, 10.1090/S0002-9939-1973-0331311-X**[6]**Witold Hurewicz and Henry Wallman,*Dimension Theory*, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR**0006493****[7]**J. R. Isbell,*Uniform spaces*, Mathematical Surveys, No. 12, American Mathematical Society, Providence, R.I., 1964. MR**0170323****[8]**James Keesling,*Shape theory and compact connected abelian topological groups*, Trans. Amer. Math. Soc.**194**(1974), 349–358. MR**0345064**, 10.1090/S0002-9947-1974-0345064-8**[9]**James Keesling,*Continuous functions induced by shape morphisms*, Proc. Amer. Math. Soc.**41**(1973), 315–320. MR**0334141**, 10.1090/S0002-9939-1973-0334141-8**[10]**James Keesling,*Decompositions of the Stone-Čech compactification which are shape equivalences*, Pacific J. Math.**75**(1978), no. 2, 455–466. MR**0514986****[11]**James Keesling,*The Stone-Čech compactification and shape dimension*, Proceedings of the 1977 Topology Conference (Louisiana State Univ., Baton Rouge, La., 1977), II, 1977, pp. 483–508 (1978). MR**540625****[12]**James Keesling and R. B. Sher,*Shape properties of the Stone-Čech compactification*, General Topology and Appl.**9**(1978), no. 1, 1–8. MR**0478105****[13]**Sibe Mardešić and Jack Segal,*Shape theory*, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR**676973****[14]**Jun-iti Nagata,*Modern dimension theory*, Bibliotheca Mathematica, Vol. VI. Edited with the cooperation of the “Mathematisch Centrum” and the “Wiskundig Genootschap” at Amsterdam, Interscience Publishers John Wiley & Sons, Inc., New York, 1965. MR**0208571****[15]**A. R. Pears,*Dimension theory of general spaces*, Cambridge University Press, Cambridge, England-New York-Melbourne, 1975. MR**0394604****[16]**Russell C. Walker,*The Stone-Čech compactification*, Springer-Verlag, New York-Berlin, 1974. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83. MR**0380698****[17]**Alicia Browner Winslow,*There are 2^{𝔠} nonhomeomorphic continua in 𝛽ℜⁿ-ℜⁿ*, Pacific J. Math.**84**(1979), no. 1, 233–239. MR**559641**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
54D35,
54D40,
54F45

Retrieve articles in all journals with MSC: 54D35, 54D40, 54F45

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0869420-3

Keywords:
Stone-Čech compactification,
Lindelöf space,
dimension,
homotopically onto,
-torus,
essential family,
sum theorem

Article copyright:
© Copyright 1987
American Mathematical Society