A finiteness condition on regular local overrings of a local domain

Author:
Bernard Johnston

Journal:
Trans. Amer. Math. Soc. **299** (1987), 513-524

MSC:
Primary 13H05; Secondary 13E99, 14E40

MathSciNet review:
869218

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The local factorization theorem of Zariski and Abhyankar implies that between a given pair of -dimensional regular local rings, , having the same quotient field, every chain of regular local rings must be finite. It is shown in this paper that this property extends to every such pair of regular local rings, regardless of dimension. An example is given to show that this does not hold if "regular" is replaced by "Cohen-Macaulay," by "normal," or by "rational singularity." More generally, it is shown that the set of dimensional regular local rings birationally dominating a given -dimensional local domain, , and ordered by containment, satisfies the descending chain condition. An example is given to show that if is regular the two examples of minimal elements of given by J. Sally do not exhaust the set of minimal elements of .

**[1]**Shreeram Abhyankar,*On the valuations centered in a local domain*, Amer. J. Math.**78**(1956), 321–348. MR**0082477****[2]**Shreeram Abhyankar,*Uniformization of Jungian local domains*, Math. Ann.**159**(1965), 1–43. MR**0177989****[3]**Wolfgang Krull,*Idealtheorie*, Zweite, ergänzte Auflage. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 46, Springer-Verlag, Berlin-New York, 1968 (German). MR**0229623****[4]**Joseph Lipman,*Rational singularities, with applications to algebraic surfaces and unique factorization*, Inst. Hautes Études Sci. Publ. Math.**36**(1969), 195–279. MR**0276239****[5]**Hideyuki Matsumura,*Commutative algebra*, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR**575344****[6]**Masayoshi Nagata,*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR**0155856****[7]**Motoyoshi Sakuma,*Existence theorems of valuations centered in a local domain with preassigned dimension and rank*, J. Sci. Hiroshima Univ. Ser. A**21**(1957/1958), 61–67. MR**0096647****[8]**Judith Sally,*Regular overrings of regular local rings*, Trans. Amer. Math. Soc.**171**(1972), 291–300. MR**0309929**, 10.1090/S0002-9947-1972-0309929-3**[9]**David L. Shannon,*Monoidal transforms of regular local rings*, Amer. J. Math.**95**(1973), 294–320. MR**0330154****[10]**Oscar Zariski,*Reduction of the singularities of algebraic three dimensional varieties*, Ann. of Math. (2)**45**(1944), 472–542. MR**0011006****[11]**Oscar Zariski and Pierre Samuel,*Commutative algebra, Volume I*, The University Series in Higher Mathematics, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR**0090581****[12]**Oscar Zariski and Pierre Samuel,*Commutative algebra. Vol. II*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR**0120249**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
13H05,
13E99,
14E40

Retrieve articles in all journals with MSC: 13H05, 13E99, 14E40

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1987-0869218-6

Keywords:
Regular local rings,
birational,
descending chain condition,
domination,
monoidal transform

Article copyright:
© Copyright 1987
American Mathematical Society