Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Porous sets and quasisymmetric maps


Author: Jussi Väisälä
Journal: Trans. Amer. Math. Soc. 299 (1987), 525-533
MSC: Primary 30C60
DOI: https://doi.org/10.1090/S0002-9947-1987-0869219-8
MathSciNet review: 869219
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A set $ A$ in $ {R^n}$ is called porous if there is $ \alpha > 0$ such that every ball $ \overline B (x,r)$ contains a point whose distance from $ A$ is at least $ \alpha r$. We show that porosity is preserved by quasisymmetric maps, in particular, by bilipschitz maps. Local versions are also given.


References [Enhancements On Off] (What's this?)

  • [Do] E. P. Dolženko, Boundary properties of arbitrary functions, Izv. Akad. Nauk. SSSR Ser. Mat. 31 (1967), 3-14. (Russian) MR 0217297 (36:388)
  • [GLM] S. Granlund, P. Lindqvist and O. Martio, $ F$-harmonic measure in space, Ann. Acad. Sci. Fenn. Ser. AI Math. 7 (1982), 233-247. MR 686642 (84f:30031)
  • [MS] O. Martio and J. Sarvas. Injectivity theorems in plane and in space, Ann. Acad. Sci. Fenn. Ser. AI Math. 4 (1979), 383-401. MR 565886 (81i:30039)
  • [Sa] J. Sarvas, The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn. Ser. AI Math. 1 (1975), 297-307. MR 0396945 (53:805)
  • [TV] P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. AI Math. 5 (1980), 97-114. MR 595180 (82g:30038)
  • [RR] T. Rado and P. V. Reichelderfer, Continuous transformations in analysis, Springer-Verlag, 1955. MR 0079620 (18:115c)
  • [Fe] H. Federer, Geometric measure theory, Springer-Verlag, 1969.
  • [Vä] J. Väisälä, Quasi-symmetric embeddings in euclidean spaces, Trans. Amer. Math. Soc. 264 (1981), 191-204. MR 597876 (82i:30031)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30C60

Retrieve articles in all journals with MSC: 30C60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0869219-8
Keywords: Porous, quasisymmetric, bilipschitz
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society