Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Application of a theorem of M. G. Kreĭn to singular integrals


Author: Rainer Wittmann
Journal: Trans. Amer. Math. Soc. 299 (1987), 581-599
MSC: Primary 42B20; Secondary 47B38
DOI: https://doi.org/10.1090/S0002-9947-1987-0869223-X
MathSciNet review: 869223
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give Hölder and $ {L^2}$ estimates for singular integrals on homogeneous spaces in the sense of Coifman and Weiss. The fundamental tool which allows us to pass from Hölder to $ {L^2}$ estimates, is a theorem of M. G. Krein.


References [Enhancements On Off] (What's this?)

  • [1] A. P. Calderón and A. Zygmund, Singular integrals and periodic functions, Studia Math. 14 (1954), 249-271. MR 0069310 (16:1017a)
  • [2] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes in Math., vol. 242, Springer-Verlag, Berlin and New York, 1971. MR 0499948 (58:17690)
  • [3] -, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • [4] M. Cotlar, A unified theory of Hilbert transforms and ergodic theory, Rev. Math. Cuyana 1 (1956), 105-167. MR 0084632 (18:893d)
  • [5] G. David and J. L. Journé, A boundedness criterian for generalized Calderón-Zygmund operators, Ann. of Math. (2) 120 (1984), 371-397. MR 763911 (85k:42041)
  • [6] C. Fefferman, Recent progress in classical Fourier analysis, Proc. ICM Vancouver, 1974. MR 0510853 (58:23308)
  • [7] I. Gohberg and N. Krupnik, Einführung in die Theorie der eindimensionalen singulären Integraloperatoren, Birkhäuser Basel-Boston-Stuttgart, 1979. MR 545507 (81d:45010)
  • [8] A. W. Knapp and E. M. Stein, Intertwining operators for semi-simple Lie groups, Ann. of Math. (2) 93 (1971), 489-578. MR 0460543 (57:536)
  • [9] A. Korn, Über Minimalflächen, deren Randkurven wenig von ebenen Kurven abweichen, Abhandl. Königl. Preuss. Akad. Wiss., Berlin, 1909.
  • [10] R. A. Macias and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), 257-270. MR 546295 (81c:32017a)
  • [11] -, Singular integrals on generalized Lipschitz and Hardy spaces, Studia Math. 65 (1979), 55-75. MR 554541 (81e:42031)
  • [12] N. G. Meyers, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc. 15 (1964), 717-721. MR 0168712 (29:5969)
  • [13] M. H. Taibleson, The preservation of Lipschitz spaces under singular integral operators, Studia Math. 24 (1964), 107-111. MR 0162133 (28:5332)
  • [14] A. Zygmund, On the preservation of classes of functions, J. Math. Mech. 8 (1959), 889-895. MR 0117498 (22:8277)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B20, 47B38

Retrieve articles in all journals with MSC: 42B20, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0869223-X
Keywords: Singular integrals, $ {L^2}$ estimates, Hölder estimates, Hilbert spaces with a dense Banach space
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society