Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Eisenstein series and the Selberg trace formula. II


Authors: H. Jacquet and D. Zagier
Journal: Trans. Amer. Math. Soc. 300 (1987), 1-48
MSC: Primary 11F70; Secondary 11F72, 22E55
MathSciNet review: 871663
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The integral of the kernel of the trace formula against an Eisenstein series is investigated. The analytic properties of this integral imply the divisibility of the convolution $ L$-function attached to a form by the zeta function of the field.


References [Enhancements On Off] (What's this?)

  • [1] Stephen S. Gelbart, Automorphic forms on adèle groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1975. Annals of Mathematics Studies, No. 83. MR 0379375
  • [2] Stephen Gelbart and Hervé Jacquet, Forms of 𝐺𝐿(2) from the analytic point of view, Automorphic forms, representations and 𝐿-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 213–251. MR 546600
  • [3] Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of 𝐺𝐿(2) and 𝐺𝐿(3), Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471–542. MR 533066
  • [4] H. Jacquet and R. P. Langlands, Automorphic forms on 𝐺𝐿(2), Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
  • [5] Hervé Jacquet, Automorphic forms on 𝐺𝐿(2). Part II, Lecture Notes in Mathematics, Vol. 278, Springer-Verlag, Berlin-New York, 1972. MR 0562503
  • [6] David Kazhdan, On lifting, Lie group representations, II (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1041, Springer, Berlin, 1984, pp. 209–249. MR 748509, 10.1007/BFb0073149
  • [7] Jean-Pierre Labesse, 𝐿-indistinguishable representations and trace formula for 𝑆𝐿(2), Lie groups and their representations (Proc. Summer School on Group Representations of the Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 331–338. MR 0430167
  • [8] J.-P. Labesse and R. P. Langlands, 𝐿-indistinguishability for 𝑆𝐿(2), Canad. J. Math. 31 (1979), no. 4, 726–785. MR 540902, 10.4153/CJM-1979-070-3
  • [9] Robert P. Langlands, Base change for 𝐺𝐿(2), Annals of Mathematics Studies, vol. 96, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. MR 574808
  • [10] Goro Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3) 31 (1975), no. 1, 79–98. MR 0382176
  • [11] D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Springer, Berlin, 1977, pp. 105–169. Lecture Notes in Math., Vol. 627. MR 0485703
  • [12] Don Zagier, Eisenstein series and the Selberg trace formula. I, Automorphic forms, representation theory and arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Studies in Math., vol. 10, Tata Inst. Fundamental Res., Bombay, 1981, pp. 303–355. MR 633667

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F70, 11F72, 22E55

Retrieve articles in all journals with MSC: 11F70, 11F72, 22E55


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1987-0871663-X
Article copyright: © Copyright 1987 American Mathematical Society