Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Eisenstein series and the Selberg trace formula. II


Authors: H. Jacquet and D. Zagier
Journal: Trans. Amer. Math. Soc. 300 (1987), 1-48
MSC: Primary 11F70; Secondary 11F72, 22E55
DOI: https://doi.org/10.1090/S0002-9947-1987-0871663-X
MathSciNet review: 871663
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The integral of the kernel of the trace formula against an Eisenstein series is investigated. The analytic properties of this integral imply the divisibility of the convolution $ L$-function attached to a form by the zeta function of the field.


References [Enhancements On Off] (What's this?)

  • [1] S. Gelbart, Automorphic forms on adele groups. Ann. of Math. Studies, No. 83, Princeton Univ. Press, Princeton, N. J., 1975. MR 0379375 (52:280)
  • [2] S. Gelbart and H. Jacquet, Forms of $ GL(2)$ from the analytic point of view, Automorphic Forms, Representations and $ L$-Functions, Proc. Sympos. Pure Math., vol. 33, Amer. Math. Soc., Providence, R. I., 1979, pp. 213-251. MR 546600 (81e:10024)
  • [3] -, A relation between automorphic representations of $ GL(2)$ and $ GL(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), 471-542. MR 533066 (81e:10025)
  • [4] H. Jacquet and R. P. Langlands, Automorphic forms on $ GL(2)$, Lecture Notes in Math., vol. 114, Springer-Verlag, Berlin and New York, 1970. MR 0401654 (53:5481)
  • [5] H. Jacquet, Automorphic forms on $ GL(2)$. II, Lecture Notes in Math., vol. 278, Springer-Verlag, Berlin and New York, 1972. MR 0562503 (58:27778)
  • [6] D. Kazhdan, On lifting, Lie Group Representations. II, Lecture Notes in Math., vol. 1041, Springer-Verlag, Berlin and New York, 1984, pp. 209-249. MR 748509 (86h:22029)
  • [7] J. P. Labesse, $ L$-indistinguishable representations and the trace formula for $ SL(2)$, Lie Groups and their Representations, Adam Hilger, London, 1975, pp. 331-338. MR 0430167 (55:3174)
  • [8] J. P. Labesse and R. P. Langlands, $ L$-indistinguishability for $ SL(2)$, Canad. J. Math. 31 (1979), 726-785. MR 540902 (81b:22017)
  • [9] R. P. Langlands, Base change for $ GL(2)$, Ann. of Math. Studies, No. 96, Princeton Univ. Press, Princeton, N. J., 1980. MR 574808 (82a:10032)
  • [10] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31 (1975), 79-98. MR 0382176 (52:3064)
  • [11] D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, Modular Functions of One Variable. VI, Lecture Notes in Math., vol. 627, Springer-Verlag, Berlin and New York, 1977, pp. 105-169. MR 0485703 (58:5525)
  • [12] -, Eisenstein series and the Selberg trace formula. I, Automorphic Forms, Representation Theory and Arithmetic, Tata Inst. Fund. Res. Stud. Math., No. 10, Springer-Verlag, Berlin and New York, 1981. MR 633667 (83j:10035)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F70, 11F72, 22E55

Retrieve articles in all journals with MSC: 11F70, 11F72, 22E55


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0871663-X
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society