A dimension formula for Hermitian modular cusp forms of degree two
Author:
Min King Eie
Journal:
Trans. Amer. Math. Soc. 300 (1987), 61-72
MSC:
Primary 11F55; Secondary 11F72
DOI:
https://doi.org/10.1090/S0002-9947-1987-0871665-3
MathSciNet review:
871665
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: An explicit dimension formula for the vector space of Hermitian modular cusp forms of degree two with respect to the modular group is obtained via the Selberg trace formula and its arithmetic properties. Also, a generating function for the graded ring of Hermitian cusp forms of degree two is given.
- [1] Hel Braun, Hermitian modular functions, Ann. of Math. (2) 50 (1949), 827-855. MR 0032699 (11:333a)
- [2] -, Hermitian modular functions, III, The Hermitian modular group, Ann. of Math. (2) 53 (1951), 143-180. MR 0039005 (12:482c)
- [3] U. Christian, A reduction theory for symplectic matrices, Math. Z. 101 (1967), 213-244. MR 0217096 (36:187)
- [4] -, Zur Theorie der symplekischen Gruppen, Acta Arith. 24 (1973), 61-85. MR 0330056 (48:8395)
- [5] Minking Eie, Siegel cusp forms of degree two and three, Mem. Amer. Math. Soc., No. 304 (1984), 1-185. MR 749684 (86c:11036)
- [6]
-, Contributions from conjugacy classes of regular elliptic elements in
to the dimension formula, Trans. Amer. Math. Soc. 285 (1984), 403-410. MR 748846 (86c:11037)
- [7] -, Contributions from conjugacy classes of regular elliptic elements in hermitian modular groups to the dimension formula of hermitian modular cusp forms, manuscript (1985).
- [8]
Minking Eie and Chung-Yuan Lin, Fixed points and conjugacy classes of regular elliptic elements in
, Trans. Amer. Math. Soc. 289 (1985), 485-496. MR 784000 (86k:11027)
- [9] E. Freitag, Modulformen zweiten Grades zum rationalen und Gauß schen Zahlkörper, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl., 1967, pp. 3-49. MR 0214541 (35:5391)
- [10] R. Godement, Fonctions automorphes, Séminaire, 1957/1958.
- [11] K. Hashimoto, The dimension of spaces of cusp forms on Siegel upper half plane of degree two (I), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), 438-488. MR 722504 (85e:11034)
- [12] K. Hashimoto and T. Ibukiyama, On class numbers of positive binary quaternion hermitian forms (II), (III), J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), 695-699; 30, (1983), 393-400. MR 656045 (83m:10029)
- [13] R. P. Langlands, Dimension of spaces of automorphic forms, Amer. J. Math. 85 (1963), 99-125. MR 0156362 (27:6286)
- [14] D. Mumford, Hirzebruch's proportionality theorem in the noncompact case, Invent. Math. 42 (1977), 239-272. MR 471627 (81a:32026)
- [15] Y. Morita, An explicit formula for the dimension of spaces of Siegel modular forms of degree two, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 167-248. MR 0347737 (50:239)
- [16] T. Shintani, On zetafunctions associated with the vector space of quadratic forms, J. Fac. Sci. Univ. Tokyo 22 (1975), 25-65. MR 0384717 (52:5590)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F55, 11F72
Retrieve articles in all journals with MSC: 11F55, 11F72
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1987-0871665-3
Article copyright:
© Copyright 1987
American Mathematical Society