Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Wrappings of permutations


Author: Saul Stahl
Journal: Trans. Amer. Math. Soc. 300 (1987), 133-152
MSC: Primary 20F05
DOI: https://doi.org/10.1090/S0002-9947-1987-0871668-9
MathSciNet review: 871668
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A theory of wrappings of permutations is constructed which is analogous to the well-known concept of branched coverings of Riemann surfaces. It is shown that this theory is strong enough to contain combinatorial definitions of such well-known groups as Fuchsian groups of the first kind and triangle groups.


References [Enhancements On Off] (What's this?)

  • [1] J. L. Brenner and R. C. Lyndon, Orbits of the product of two permutations, European J. Combin. 4 (1983), 279-293. MR 743150 (85c:20003)
  • [2] R. Cori, A. Machi, L. G. Penaud and B. Vauquelin, On the automorphism group of a planar hypermap, European J. Combin. 2 (1981), 331-334. MR 638407 (83e:05059)
  • [3] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Ergeb. Math. Grenzgeb. (3) 89 (1977). MR 0577064 (58:28182)
  • [4] A. Machi, Homology of hypermaps, J. London Math. Soc. (2) 31 (1985), 10-16. MR 810557 (87d:05067)
  • [5] W. Magnus, Noneuclidean tesselations and their groups, Academic Press, New York, 1974. MR 0352287 (50:4774)
  • [6] G. A. Miller, On the product of two substitutions, Amer. J. Math. 22 (1900), 185-190. MR 1505829
  • [7] M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge University Press, New York, 1961. MR 0132534 (24:A2374)
  • [8] H. Poincaré, Théorie des groupes Fuchsiennes, Acta Math. 1 (1982), 1-62.
  • [9] H. Seifert and W. Threlfall, A textbook of topology, Academic Press, New York, 1980. MR 575168 (82b:55001)
  • [10] S. Stahl, A combinatorial analog of the Jordan Curve Theorem, J. Combin. Theory (B) 35 (1983), 28-38. MR 723568 (85e:05065)
  • [11] -, The average genus of classes of graph embeddings, Congr. Numer. 40 (1983), 375-388. MR 734384 (85d:05106)
  • [12] D. W. Walkup, How many ways can a permutation be factored into two $ n$-cycles? Discrete Math. 28 (1979), 315-319. MR 548630 (81d:05005)
  • [13] A. T. White, Graphs, groups and surfaces, North-Holland Mathematical Studies 8, North-Holland, Amsterdam, 1984. MR 780555 (86d:05047)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20F05

Retrieve articles in all journals with MSC: 20F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0871668-9
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society