THE HOMOLOGY AND HIGHER REPRESENTATIONS OF THE AUTOMORPHISM GROUP OF A RIEMANN SURFACE

S. A. BROUGHTON

Abstract. The representations of the automorphism group of a compact Riemann surface on the first homology group and the spaces of \(q \)-differentials are decomposed into irreducibles. As an application it is shown that \(M_{24} \) is not a Hurwitz group.

1. Introduction. Let \(G \) be a finite group of orientation-preserving homeomorphisms of a Riemann surface \(S \) of genus \(\sigma \geq 2 \). We then have a representation of \(G \) on the first homology group \(H_1(S) = H_1(S, \mathbb{C}) \). If \(S \) has a conformal structure which is preserved under the \(G \)-action, then there are also representations of \(G \) on the various spaces of \(q \)-differentials \(\mathcal{H}^q(S) \) (\(\mathcal{H}^q(S) = \) holomorphic sections of \(T^*(S) \otimes \cdots \otimes T^*(S) \) \(q \) times), \(T^*(S) = \) cotangent bundle). In this note we give formulae (Propositions 1–2) for the decompositions of these representations into irreducibles.

The decompositions for \(H_1(S) = \mathcal{H}^1(S) \oplus \mathcal{H}^1(S)^* \) and \(\mathcal{H}^2(S) \) may be applied to the study of surfaces of genus \(\sigma \). From the decomposition of the homology representation it follows that the characters of \(G \) must satisfy certain inequalities (see (13) below). This is useful in showing that certain groups cannot occur as automorphism groups of a surface of a given genus \(\sigma \). In [S] L. L. Scott has given a formula equivalent to (13), though derived by a purely group-theoretic argument.

The decompositions of \(\mathcal{H}^2(S) \) may be used to locally describe the action of the Teichmüller modular group \(\text{Mod}_\sigma \) on Teichmüller space, \(\mathcal{T}_\sigma \) (see [R]). This was used by J. Lewittes [L] to compute the dimensions of the branch loci of the action of \(\text{Mod}_\sigma \) on \(\mathcal{T}_\sigma \).

The decompositions are derived in §2 from the Eichler Trace Formula and the Lefshetz Fixed Point Formula, using a simple character theory argument. In §3 we give an application showing that the Mathieu group \(M_{24} \) is not a Hurwitz group.

2. The decomposition formulae and their derivations. First we recall some facts about actions of a finite group \(G \) on a surface \(S \) (cf. [H, T]). The space \(T = S/G \) is a surface \(T \) of genus \(\tau \), and \(\pi : S \to T \) is branched over \(Q_1, \ldots, Q_\ell \in T \) with branching orders \(n_1, \ldots, n_\ell \). Call \((\tau; n_1, \ldots, n_\ell) \) the branching data of \(G \) (write \((n_1, \ldots, n_\ell) \) if \(\tau = 0 \)). The Riemann-Hurwitz formula [FK, p. 243] gives

\[
(2\sigma - 2)/|G| = 2\tau - 2 + \sum_{i=1}^{\ell} (1 - 1/n_i).
\]
We denote the right-hand side by κ. There are elements $a_1, \ldots, a_r, b_1, \ldots, b_r, c_1, \ldots, c_t$ generating G, such that

\[(2) \quad \prod_{i=1}^{r} [a_i, b_i] \prod_{j=1}^{t} c_j = 1,\]

and

\[(3) \quad o(c_i) = n_i.\]

If $P \in S$ is a point fixed by $g \in G$, then the induced map of tangent spaces $dg^{-1} : T_p(S) \to T_g(S)$ is multiplication by an $o(g)$th root of unity, denoted by $e(P, g)$. It is easy to show that we may pick the c_i and $P_i \in \pi^{-1}(Q_i)$ such that $G_{P_i} = \{ g \in G \mid gP_i = P_i \} = \langle c_i \rangle$ and

\[(4) \quad e(P, c_i) = \exp(2\pi i / n_i).\]

Let $U_t \subseteq S^1$ be the group of nth roots of unity and let $\varphi_k : S^1 \to S^1$ be the character $z \mapsto z^k$, $k \in \mathbb{Z}$. Let c_1, \ldots, c_t be as defined above and let $\nu_j : \langle c_i \rangle \to U_t$ be the isomorphism defined by $c_i \mapsto \exp(2\pi i / n_i)$. Let χ_0, \ldots, χ_t be the irreducible characters of G with χ_0 principal character. Each χ_j defines a character of U_t by means of the isomorphism ν_j. Define $m^k_j(\chi_j), 0 \leq k \leq n_i - 1$, by

\[(5) \quad \chi_j |_{U_t} = \sum_{k=0}^{n_i - 1} m^k_j(\chi_j) \varphi_k |_{U_t},\]

and define $m^k_j(\chi_j)$ for all $k \in \mathbb{Z}$ by periodicity: $m^k_j(\chi_j) = m^{k+n_i}(\chi_j)$. Let $\text{ch}_{\mathcal{X}^g(S)}$ be the character of the representation of G on $\mathcal{H}^g(S)$, and write

$\text{ch}_{\mathcal{X}^g(S)} = \mu_0^0 \chi_0 + \cdots + \mu_t^0 \chi_t$.

Define the Poincaré series $P_{\chi_j}(z)$ by

\[P_{\chi_j}(z) = \sum_{q=0}^{\infty} \mu^q_j z^q.\]

We have the following propositions.

Proposition 1. Let G be a group of conformal automorphisms of a Riemann surface S of genus ≥ 2 and let all notation be as above. Then:

(i) $P_{\chi_0}(z) = 1 + z + zR_{\chi_0}(z)$,
(ii) $P_{\chi_j} = zR_{\chi_j}(z), j \neq 0$, where
(iii)

\[R_{\chi_j} = \frac{(1 - \tau) \chi_j(1)}{1 - z} + \kappa \chi_j(1) \left(\frac{1}{1 - z^2} - \frac{1}{n_i} \sum_{i=1}^{t} \frac{\epsilon_i^0(j) + \epsilon_i^1(j) z + \cdots + \epsilon_i^{n_i-1}(j) z^{n_i-1}}{1 - z^{n_i}} \right),\]

and

\[\epsilon_i^r(j) = \sum_{k=0}^{n_i-1} k \cdot m^1_i + r + k(\chi_j).\]
Proposition 2. Let G be a finite group of homeomorphisms of a Riemann surface S, $\text{ch}_{H_i(S)}$ the character of the homology representation, and other notation as above. Then the multiplicity of X_j in $\text{ch}_{H_i(S)}$, $\langle X_j, \text{ch}_{H_i(S)} \rangle$, is given by

(i) $\langle X_0, \text{ch}_{H_i(S)} \rangle = 2\tau$,

(ii) $\langle X_j, \text{ch}_{H_i(S)} \rangle = (2\tau - 2 + t)\chi_j(1) - \sum_{i=1}^{t} m_i^0(\chi_j), \quad j \neq 0.$

Let p be the regular representation of G and p_i the permutation character determined by G acting on the coset space $G/\langle c_i \rangle$. Then (i) and (iii) may be rewritten:

(iii) $\text{ch}_{H_i(S)} = 2\chi_0 + (2\tau - 2 + t)p - \sum_{i=1}^{t} p_i.$

Before proving Propositions 1–2, we recall the Eichler Trace Formula and the Lefschetz Fixed Point Formula. Let $\eta: G \to \mathbb{Z}$ be the class function on G obtained by setting $\eta(g)$ equal to the negative of the Euler characteristic of the fixed point subset S^g of g, i.e.

$\eta(1) = 2\sigma - 2, \quad \eta(g) = -|S^g|, \quad g \neq 1.$

By the Lefschetz Fixed Point Formula,

$\text{ch}_{H_i(S)}(g) = 2 + \eta(g), \quad g \in G.$

Define $\lambda_q: G \to \mathbb{C}, q \geq 0$, as follows:

$\lambda_0(g) = 1, \quad g \in G,$

$\lambda_q(1) = (\sigma - 1)(2q - 1), \quad q \geq 1,$

$\lambda_q(g) = \sum_{P \in S^g} \frac{(\epsilon(P, g))^q}{1 - \epsilon(P, g)}, \quad q \geq 1,$

where the last sum is zero if S^g is empty. The Riemann-Roch Theorem and the Eichler Trace Formula state that the characters $\text{ch}_{\pi^*(S)}$ are given by

$\text{ch}_{\pi^*(S)}(g) = \lambda_q(g), \quad q \neq 1,$

$\text{ch}_{\pi^*(S)}(g) = 1 + \lambda_q(g).$

For proofs of (6)–(7) see [FK]. Observe [FK] that $\eta(g) = 2 \mathbb{R} \lambda_1(g)$.

Write

$\eta = \eta^0 + \cdots + \eta^i, \quad \lambda_q = \lambda_q^0 + \cdots + \lambda_q^i,$

where

$\eta^0(1) = 2\sigma - 2, \quad \eta^0(g) = 0, \quad g \neq 1,$

$\eta^i(1) = 0, \quad \eta^i(g) = -|S^g \cap \pi^{-1}(Q_i)|, \quad i > 0,$

$\lambda_q^0(1) = (\sigma - 1)(2q - 1), \quad \lambda_q^0(g) = 0, \quad g \neq 1, q \geq 1,$

$\lambda_q^i(1) = 0, \quad \lambda_q^i(g) = \sum_{P \in S^g \cap \pi^{-1}(Q_i)} \frac{(\epsilon(P, g))^q}{1 - \epsilon(P, g)}, \quad i > 0, q \geq 1.$
For \(g \neq e \in G \), \(S^g \cap \pi^{-1}(Q) \neq \emptyset \) if and only if the conjugacy class of \(g \), \(\text{Cl}(g) \), meets \(\langle c_i \rangle \). Assume \(g \in \langle c_i \rangle \), then since \(G_P \) is cyclic, \(S^g \cap \pi^{-1}(Q) \) is in 1-1 correspondence with \(N_G(\langle g \rangle)/\langle c_i \rangle \) by \(h \mapsto h \cdot P_i \). Furthermore, \(N_G(\langle g \rangle)/\text{Cent}(g) \) is in 1-1 correspondence with \(\text{Cl}(g) \cap \langle c_i \rangle \) by \(h \mapsto wh^{-1} \). From (4) and the definition of \(\nu_i \), \(\epsilon(P_i, g) = \nu_i(g) \), \(g \in \langle c_i \rangle \). It easily follows for \(i > 0 \) that

\[
\lambda_q'(g) = \frac{|\text{Cent}(g)|}{n_i} \sum_{h \in \text{Cl}(g) \cap \langle c_i \rangle} \frac{(\nu_i(h))^q}{1 - \nu_i(h)}.
\]

Since \(\lambda_q' \) is a class function, this holds for all \(1 \neq g \in G \). Similarly, for \(1 \neq g \in G \),

\[
\eta'(g) = -\frac{|\text{Cent}(g)|}{n_i} \frac{1}{|\text{Cl}(g) \cap \langle c_i \rangle|}.
\]

We now give proofs of the decompositions, first Proposition 2. Let \(1 = g_0, \ldots, g_t \) be a set of representatives of conjugacy classes of \(G \). For \(j = 0, 1, \ldots, t \):

\[
\langle \eta, \chi_j \rangle = \sum_{i=0}^{t} \langle \eta, \chi_j \rangle = \sum_{i=0}^{t} \frac{1}{|G|} \sum_{g \in G} \eta'(g) \chi_j(g)
\]

\[
= \sum_{i=0}^{t} \sum_{k=0}^{t} \frac{\eta'(g_k) \chi_j(g_k)}{|\text{Cent}(g_k)|}
\]

\[
= \frac{2\alpha - 2}{|G|} \chi_j(1) - \sum_{i=1}^{t} \frac{1}{n_i} \sum_{1 \neq g \in \langle c_i \rangle} \chi_j(g),
\]

from (9) above. By the Riemann-Hurwitz Formula (1), (10) may be rewritten as

\[
(2\tau - 2 + t) \chi_j(1) - \sum_{i=1}^{t} \frac{1}{n_i} \sum_{g \in \langle c_i \rangle} \chi_j(g) = (2\tau - 2 + t) \chi_j(1) - \sum_{i=1}^{t} m_i(\chi_j).
\]

Since \(ch_{H_i(S)} = 2\chi_0 + \eta \), (i) and (ii) of Proposition 2 follow immediately; (iii) follows from (i)–(ii) and Frobenius reciprocity.

Let \(R_g(z) = \sum_{q=1}^{\infty} \lambda_q(g)z^q^{-1} \). To prove Proposition 1 it suffices by (7) to prove

\[
R_{\chi_j}(z) = \frac{1}{|G|} \sum_{g \in G} R_g(z) \chi_j(g).
\]

Using (8) and arguing as above, the right-hand side of (11) equals

\[
\sum_{q=1}^{\infty} \frac{(\alpha - 1) \chi_j(1)}{|G|} (2q - 1) z^{q-1} + \sum_{i=1}^{t} \sum_{q=1}^{\infty} \sum_{1 \neq g \in \langle c_i \rangle} \frac{1}{n_i} \frac{(\nu_i(g))^q}{1 - \nu_i(g)} \chi_j(g)z^{q-1}
\]

\[
= \kappa \chi_j(1)(1 - z)^{-2} \frac{\kappa \chi_j(1)(1 - z)^{-1}}{2}
\]

\[
+ \sum_{i=1}^{t} \frac{n_i^{-1}}{n_i} \sum_{1 \neq \omega \in \Gamma_n} \frac{\omega^{r+1}}{1 - \omega} \chi_j(\omega)z^{1 - z}^{-n_i}.
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We calculate
\[
\sum_{1 \neq \omega \in U_n} \frac{\omega^s}{1 - \omega} \chi(\omega) = \lim_{x \to 1} \sum_{1 \neq \omega \in U_n} \frac{\omega^s}{1 - x\omega} \chi(\omega) = \lim_{x \to 1} \left(\sum_{q=0}^{\infty} \sum_{\omega \in U_n} \omega^{q+x} \chi(\omega) x^q - \sum_{q=0}^{\infty} \chi(1) x^q \right) \]
\[
= \lim_{x \to 1} \left(\frac{n}{1 - x^n} - \frac{\chi(1)}{1 - x} \right),
\]
where \(L_s(x) = a_0 + a_1 x + \cdots + a_{n-1} x^{n-1} \) and \(a_k = (1/n) \sum_{\omega \in U_n} \omega^{k+x} \chi(\omega) \). The limit is easily calculated by l'Hôpital's rule and equals \((n - 1)\chi(1)/2 - L'_s(1)\). Setting \(n = n_i, s = r + 1, \chi = \chi_j \), then \(a_k = m_i^{1+k+r}(\chi_j) \) and (11) now follows easily from (12) and the definition of \(R_{x_j} \).

3. Application. If \(\tau = 0 \), then \(G \) is generated by \(c_1, \ldots, c_t \) with \(c_1 \cdot c_2 \cdots c_t = 1 \), and from (ii) of Proposition 2 it follows that for a nonprincipal character \(\chi \)

\[
(t - 2)\chi_j(1) \geq \sum_{i=1}^t m_i^0(\chi_j).
\]
This is a reformulation of the inequality that L. L. Scott obtains in [S] by purely group theoretic means for arbitrary characteristic. The \(G \)-module he constructs on p. 475 of [S] may be identified with \(H(S) \). The inequality (13) may sometimes be used as a “Brauer trick” to show that a given group cannot occur as the automorphism group of a surface of given genus.

As an example of this let us verify that the Mathieu group \(M_{24} \) is not a Hurwitz group. The group \(G \) is a Hurwitz group if it occurs as the automorphism group of a surface \(S \) of genus \(\sigma \) with \(|G| = 84(\sigma - 1) \), Hurwitz’ upper bound for the order of an automorphism group. If \(G \) acts on \(S \) as above then the branching data is \((2, 3, 7)\) and \(G \) has a generating \((2, 3, 7)\)-vector \((c_1, c_2, c_3)\). In Table 1 we have copied a portion of the character table of \(M_{24} \) [Fr, p. 346], giving, for selected characters, the character values of all elements of order 1, 2, 3, or 7. The classes are given in cycle notation, \(M_{24} \) being realized as a permutation group of degree 24.

<table>
<thead>
<tr>
<th>(\chi)</th>
<th>(1^{24})</th>
<th>(1^{8^2})</th>
<th>(1^{12^3})</th>
<th>(1^{3^3})</th>
<th>(1^{7^3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi_1)</td>
<td>(45)</td>
<td>(-3)</td>
<td>(5)</td>
<td>(0)</td>
<td>(3)</td>
</tr>
<tr>
<td>(\chi_2)</td>
<td>(252)</td>
<td>(28)</td>
<td>(12)</td>
<td>(0)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

For \(c_i \) chosen from the classes in Table 1 all the nonidentity elements of \(\langle c_i \rangle \) are conjugate in \(M_{24} \) except for \(\langle c_3 \rangle \), where half lie in \(1^{3^2} \) and the other half lie in \(1^{7^3} \). Since \(k = 1/42 \), we obtain from (10), for any nonprincipal character \(\chi \) of \(M_{24} \),

\[
\frac{1}{42} (\chi(1) - 21\chi(c_1) - 28\chi(c_2) - 36 \text{Re} \chi(c_3)) = \langle \eta, \chi \rangle \geq 0,
\]
or
\[
\chi(1) \geq 21\chi(c_1) + 28\chi(c_2) + 36 \text{Re} \chi(c_3).
\]
(This is equivalent to (13) but slightly more convenient.) There is no possible choice of \(c_1, c_2, c_3 \) for which this inequality holds for both the characters \(\chi_1, \chi_2 \) above. It is interesting to note that for \(c_1 \in 2^{12}, c_2 \in 3^8, c_3 \in 1^{37}, \) or \(1^{37} \), \(\chi_2 \) and its conjugate \(\overline{\chi}_2 \) are the only irreducible characters for which (13) fails, and that the standard Brauer trick \([I, p. 70]\) applied to any pair of \(\langle c_1 \rangle, \langle c_2 \rangle, \) or \(\langle c_3 \rangle \) fails.

REFERENCES

Department of Mathematics, University of Wisconsin - Madison, Madison, Wisconsin 53706

Current address: Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115