Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A global approach to the Rankin-Selberg convolution for $ {\rm GL}(3,{\bf Z})$


Author: Solomon Friedberg
Journal: Trans. Amer. Math. Soc. 300 (1987), 159-174
MSC: Primary 11F70; Secondary 22E50
DOI: https://doi.org/10.1090/S0002-9947-1987-0871670-7
MathSciNet review: 871670
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss the Rankin-Selberg convolution on $ \operatorname{GL} (3,{\mathbf{Z}})$ in the `classical' language of symmetric spaces and automorphic forms.


References [Enhancements On Off] (What's this?)

  • [1] D. Bump, Automorphic forms on $ \operatorname{GL} (3,{\mathbf{R}})$, Lecture Notes in Math., vol. 1083, Springer-Verlag, Berlin and New York, 1984. MR 765698 (86g:11028)
  • [2] K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. (2) 76 (1962), 93-136. MR 0140491 (25:3911)
  • [3] S. Gelbart and H. Jacquet, A relation between automorphic representations of $ \operatorname{GL} (2)$ and $ \operatorname{GL} (3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), 471-542. MR 533066 (81e:10025)
  • [4] G. Gilbert, Analytic multiplicity one theorems for $ \operatorname{GL} (N)$, Ph. D. Thesis, Harvard University, May 1984.
  • [5] I. Gradshteyn and I. Ryzhik, Tables of integrals, series, and products (Corrected and enlarged edition), Academic Press, New York, 1980.
  • [6] K. Imai and A. Terras, The Fourier expansion of Eisenstein series for $ \operatorname{GL} (3,{\mathbf{Z}})$, Trans. Amer. Math. Soc. 273 (1982), 679-694. MR 667167 (84d:10033)
  • [7] H. Jacquet, Dirichlet series for the group $ \operatorname{GL} (N)$, Automorphic Forms, Representation Theory and Arithmetic, Tata Institute of Fundamental Research, Springer-Verlag, Berlin and New York, 1981. MR 633661 (83j:10032)
  • [8] H. Jacquet, I. Piatetskii-Shapiro and J. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464. MR 701565 (85g:11044)
  • [9] -, Automorphic forms on $ \operatorname{GL} (3)$. I, II. Ann. of Math. (2) 109 (1979), 169-258. MR 519356 (80i:10034a)
  • [10] -, Facteur $ L$ et $ \varepsilon $ du groupe linéaire: théorie Archimédienne, C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), 13-18.
  • [11] R. Langlands, On the functional equation satisfied by Eisenstein series, Lecture Notes in Math., vol. 544, Springer-Verlag, Berlin and New York, 1976. MR 0579181 (58:28319)
  • [12] C. Moreno, Explicit formulas in the theory of automorphic forms, Lecture Notes in Math., vol. 626, Springer-Verlag, Berlin and New York, 1977. MR 0476650 (57:16209)
  • [13] -, The strong multiplicity one theorem for $ {\operatorname{GL} _n}$, Bull. Amer. Math. Soc. (N. S.) 11 (1984), 180-182. MR 741735 (85j:11058)
  • [14] M. Ram Murty, On the estimation of eigenvalues of Hecke operators, Proc. Edmonton Number Theory Conf. (to appear). MR 823263 (87j:11037)
  • [15] R. Rankin, Contributions to the theory of Ramanujan's function $ \tau (n)$ and similar arithmetical functions. II, Proc. Cambridge Philos. Soc. 35 (1939), 357-372.
  • [16] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Natur. 43 (1940), 47-50. MR 0002626 (2:88a)
  • [17] J.-P. Serre, letter to G. Gilbert, Dec. 1983.
  • [18] J. Shalika, The Multiplicity One Theorem for $ \operatorname{GL} (n)$, Ann. of Math. (2) 100 (1974), 171-193. MR 0348047 (50:545)
  • [19] D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo 1A 28 (1981), 415-437. MR 656029 (83k:10056)
  • [20] H. Jacquet, Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France 95 (1967), 243-309. MR 0271275 (42:6158)
  • [21] H. Maass, Siegel's modular forms and Dirichlet series, Lecture Notes in Math., vol. 216, Springer-Verlag, Berlin and New York, 1971. MR 0344198 (49:8938)
  • [22] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87. MR 0088511 (19:531g)
  • [23] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten, Japan, and Princeton Univ. Press, N. J., 1971. MR 0314766 (47:3318)
  • [24] T. Shintani, On an explicit formula for class-$ 1$ "Whittaker functions" on $ {\operatorname{GL} _n}$ over $ P$-adic fields, Proc. Japan Acad. 52 (1976), 180-182. MR 0407208 (53:10991)
  • [25] T. Tamagawa, On the zeta-functions of a division algebra, Ann. of Math. (2) 77 (1963), 387-405. MR 0144928 (26:2468)
  • [26] A. Terras, On automorphic forms for the general linear group, Rocky Mountain J. Math. 12 (1982), 123-143. MR 649746 (83f:10031)
  • [27] -, A generalization of Epstein's zeta function, Nagoya Math. J. 42 (1971), 173-188. MR 0286761 (44:3970)
  • [28] -, Bessel series expansions of the Epstein zeta function and the functional equation, Trans. Amer. Math. Soc. 183 (1973), 477-486. MR 0323735 (48:2091)
  • [29] -, The Chowla-Selberg method for Fourier expansion of higher rank Eisenstein series, Canad. Math. Bull. 28 (1985), 280-294. MR 790949 (87a:11049)
  • [30] C. Moreno and F. Shahidi, The $ L$-functions $ L(s,{\operatorname{Sym} ^m}(r),\pi )$, Canad. Math. Bull. 28 (1985), 405-410. MR 812115 (87a:11051)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F70, 22E50

Retrieve articles in all journals with MSC: 11F70, 22E50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0871670-7
Keywords: Automorphic forms, Eisenstein series, Rankin-Selberg convolution, Hecke operators
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society