Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Orthogonal polynomials, measures and recurrences on the unit circle


Author: Paul Nevai
Journal: Trans. Amer. Math. Soc. 300 (1987), 175-189
MSC: Primary 42C05
DOI: https://doi.org/10.1090/S0002-9947-1987-0871671-9
MathSciNet review: 871671
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: New characterizations are given for orthogonal polynomials on the unit circle and the associated measures in terms of the reflection coefficients in the recurrence equation satisfied by the polynomials.


References [Enhancements On Off] (What's this?)

  • [Ak] N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.
  • [AsIs] R. Askey and M. Ismail, Recurrence relations, continued fractions and orthogonal polynomials, Mem. Amer. Math. Soc. No. 300 (1984). MR 743545 (85g:33008)
  • [Ba] G. Baxter, A convergence equivalence related to polynomials orthogonal on the unit circle, Trans. Amer. Math. Soc. 99 (1961), 471-487. MR 0126126 (23:A3422)
  • [Bu] A. Bultheel, Convergence of Schur parameters and transmission zeros of a meromorphic spectrum, Proceed. MTNS, 1985. MR 924013 (88m:93035)
  • [Ca1] K. M. Case, Orthogonal polynomials revisited, Theory and Applications of Special Functions (R. A. Askey, ed.), Academic Press, New York, 1975, pp. 289-304. MR 0390322 (52:11148)
  • [Ca2] -, Scattering theory and polynomials orthogonal on the unit circle, J. Math. Phys. 20 (1979), 299-310. MR 519213 (80f:81100)
  • [Ch] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • [DeGe1] Ph. Delsarte and Y. Genin, The split Levinson algorithm, IEEE Trans. Acoust. Speech Signal Process. (to appear). MR 844658 (87f:94007)
  • [DeGe2] -, Application of the split Levinson algorithm: the ultraspherical, polynomials, manuscript.
  • [Do1] J. M. Dombrowski, Spectral properties of phase operators, J. Math. Phys. 15 (1974), 576-577. MR 0334757 (48:13075)
  • [Do2] -, Spectral properties of real parts of weighted shift operators, Indiana Univ. Math. J. 29 (1980), 249-259. MR 563209 (81b:47039)
  • [Do3] -, Tridiagonal matrix representations of cyclic self-adjoint operators. I, Pacific J. Math. 114 (1984), 325-334. MR 757504 (85h:47033)
  • [Do4] -, Tridiagonal matrix representations of cyclic self-adjoint operators. II, Pacific J. Math. 120 (1985), 47-53. MR 808928 (87c:47030)
  • [DoFr] J. M. Dombrowski and G. H. Fricke, The absolute continuity of phase operators, Trans. Amer Math. Soc. 213 (1975), 363-372. MR 0377573 (51:13744)
  • [DoNe] J. M. Dombrowski and P. Nevai, Orthogonal polynomials, measures and recurrence relations, SIAM J. Math. Anal. 17 (1986), 752-759. MR 838253 (87g:42039)
  • [Fr] G. Freud, Orthogonal polynomials, Pergamon Press, New York, 1971.
  • [Ga] W. Gautschi, Computational aspects of three-term recurrence relations, SIAM Rev. 9 (1967), 24-82. MR 0213062 (35:3927)
  • [Ge] J. S. Geronimo, Matrix orthogonal polynomials on the unit circle, J. Math. Phys. 22 (1981), 1359-1365. MR 626123 (82k:42013)
  • [GeCa1] J. S. Geronimo and K. M. Case, Scattering theory and polynomials orthogonal on the unit circle, J. Math. Phys. 20 (1979), 299-320. MR 519213 (80f:81100)
  • [GeCa2] -, Scattering theory and polynomials orthogonal on the real line, Trans. Amer. Math. Soc. 258 (1980), 467-494. MR 558185 (82c:81138)
  • [Ger1] Ya. L. Geronimus, Orthogonal polynomials, Consultants Bureau, New York, 1961. MR 0133643 (24:A3469)
  • [Ger2] -, Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Transl. 3 (1962), 1-78.
  • [Ger3] -, On asymptotic properties of polynomials which are orthogonal on the unit circle, and on certain properties of positive harmonic functions, Amer. Math. Soc. Transl. 3 (1962), 79-106.
  • [Ger4] -, Orthogonal polynomials, Amer. Math. Soc. Transl. 108 (1977), 37-130.
  • [Ló] G. López Lagomasino, On the asymptotics of the ratio of orthogonal polynomials and convergence of multi-point Padé approximations, Mat. Sb. 128 (170) (1985), 216-229. MR 809486 (87e:30050)
  • [Ma] Al. Magnus, Reflection coefficients of the circular Jacobi polynomials, private communication.
  • [MáNe1] A. Máté and P. Nevai, Bernstein's inequality in $ {L_p}$ for $ 0 < p < 1$ and $ (C,1)$ bounds for orthogonal polynomials, Ann. of Math. (2) 111 (1980), 145-154. MR 558399 (81c:42003)
  • [MáNe2] -, Remarks on E. A. Rahmanov's paper "On the asymptotics of the ratio of orthogonal polynomials", J. Approximation Theory 36 (1982), 64-72. MR 673857 (83m:42017)
  • [MáNe3] -, Orthogonal polynomials and absolutely continuous measures, Approximation Theory, IV (C. K. Chui et al., eds.), Academic Press, New York, 1983, pp. 611-617. MR 754400 (85j:42044)
  • [MáNeTo1] A. Máté, P. Nevai, and V. Totik, What is beyond Szegö's theory of orthogonal polynomials, Rational Approximation and Interpolation (P. R. Graves-Morris et al., eds.), Lecture Notes in Math., vol. 1105, Springer-Verlag, New York, 1984, pp. 502-510.
  • [MáNeTo2] -, Asymptotics for the ratio of leading coefficients of orthonormal polynomials on the unit circle, Constructive Approximation 1 (1985), 63-69. MR 766095 (85j:42045)
  • [MáNeTo3] A. Máté, P. Nevai and V. Totik, Asymptotics for orthogonal polynomials defined by a recurrence relation, Constructive Approximation 1 (1985), 231-248. MR 891530 (89a:42035)
  • [MáNeTo4] -, Strong and weak convergence of orthogonal polynomials, Amer. J. Math. (to appear). MR 882423 (88d:42040)
  • [MáNeTo5] -, Extensions of Szegö's theory of orthogonal polynomials. II, Constructive Approximation 3 (1987).
  • [MáNeTo6] -, Extensions of Szegö's theory of orthogonal polynomials. III, Constr. Approx. 3 (1987).
  • [MáNeTo7] -, Twisted difference operators and perturbed Chebyshev polynomials, manuscript.
  • [Ne1] P. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc., No. 213 (1979). MR 519926 (80k:42025)
  • [Ne2] -, On orthogonal polynomials, J. Approximation Theory 25 (1979), 34-37. MR 526275 (81c:42032)
  • [Ne3] -, An asymptotic formula for the derivatives of orthogonal polynomials, SIAM J. Math. Anal. 10 (1979), 472-477. MR 529065 (80j:42040)
  • [Ne4] -, Orthogonal polynomials defined by a recurrence relation, Trans. Amer. Math. Soc. 250 (1979), 369-384. MR 530062 (80d:42011)
  • [Ne5] -, Two of my favorite ways of obtaining asymptotics for orthogonal polynomials, Functional Analysis and Approximation (P. L. Butzer et al., eds.), ISNM 65, Birkhäuser Verlag, Basel, 1984, pp. 417-436. MR 820541 (87g:42044)
  • [Ne6] -, Extensions of Szegö's theory of orthogonal polynomials, Orthogonal Polynomials and Their Applications (C. Brezinski et al., eds.), Lecture Notes in Math., vol. 1171, Springer-Verlag, Berlin, 1985, pp. 230-238.
  • [Ne7] -, "Géza Freud, orthogonal polynomials and Christoffel functions, J. Approximation Theory 48 (1986).
  • [NeTo] P. Nevai and V. Totik, Orthogonal polynomials and their zeros, manuscript.
  • [Ni] E. M. Nikishin, On an estimate for orthogonal polynomials, Acta Sci. Math. (Szeged) 48 (1985), 395-399. (Russian) MR 810895 (87g:42045)
  • [Ra1] E. A. Rahmanov, On the asymptotics of the ratio of orthogonal poynomials, Math. USSR Sb. 32 (1977), 199-213.
  • [Ra2] -, On the asymptotics of the ratio of orthogonal polynomials. II, Math. USSR Sb. 46 (1983), 105-117.
  • [ShTa] J. A. Shohat and J. D. Tamarkin, The problem of moments, Math. Surveys, No. 1, Amer. Math. Soc., Providence, R. I., 1970. MR 0008438 (5:5c)
  • [Sz] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1939, 4th ed., 1975.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42C05

Retrieve articles in all journals with MSC: 42C05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1987-0871671-9
Keywords: Orthogonal polynomials, recurrence formulas, difference equations, Szegö Theory
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society