PERIODIC PHENOMENA IN THE CLASSICAL ADAMS SPECTRAL SEQUENCE

MARK MAHOWALD AND PAUL SHICK

Abstract. We investigate certain periodic phenomena in the classical Adams spectral sequence which are related to the polynomial generators v_n in $\pi_*(BP)$. We define the notion of a class a in $\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2)$ being v_n-periodic or v_n-torsion and prove that classes that are v_n-torsion are also v_k-torsion for all k such that $0 \leq k \leq n$. This allows us to define a chromatic filtration of $\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2)$ paralleling the chromatic filtration of the Novikov spectral sequence E_2-term given in [13].

1. Introduction and statement of results. This work is motivated by a desire to understand something of the periodic phenomena noticed by Miller, Ravenel and Wilson in their work on the Novikov spectral sequence from the point of view of the classical Adams spectral sequence. The E_2-term of the classical Adams spectral sequence (hereafter abbreviated clASS) is isomorphic to $\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2)$, where A is the mod 2 Steenrod algebra. This has been calculated completely in the range $t - s < 70$ [17]. The stem-by-stem calculation is quite tedious, though, so one looks for more global sorts of phenomena. The first result in this direction was the discovery of a periodic family in $\pi_*(S^0)$ and their representatives in $\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2)$, discussed by Adams in [2] and by Barratt in [4]. This stable family, which is present for all primes p, is often denoted by $\{a_i\}$ and is thought of as v_1-periodic, where v_1 is the polynomial generator of degree $2(p - 1)$ in $\pi_*(BP) = \mathbb{Z}_{(p)}[v_1, v_2, \ldots]$. Using the Novikov spectral sequence based on the spectrum BP, the families $\{\beta_i\}$ and $\{\gamma_i\}$ have been investigated for sufficiently large odd primes [13]. These are v_2- and v_3-periodic families, respectively. In [6 and 10], a start was made toward understanding these v_2-periodic families from the point of view of the clASS. Here we continue this effort, defining the concepts of v_2-periodicity and v_2-torsion in $\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2)$ for all i.

Our method of study is to utilize certain Hopf subalgebras of A. Let A_n denote the Hopf subalgebra generated by $(\text{Sq}^0, \text{Sq}^1, \text{Sq}^2, \ldots, \text{Sq}^{2^n})$. Then $\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \cong \lim\limits_{\leftarrow k} \text{Ext}_{A_n}(\mathbb{Z}/2, \mathbb{Z}/2)$. Our first result is:

Theorem A. For i any positive integer, there exists a unique nonzero divisor

$$w_i \in \text{Ext}_{A_n}^{2^{i+1}-1, 2^i+1}(\mathbb{Z}/2, \mathbb{Z}/2).$$

Received by the editors January 11, 1985 and in revised form, July 16, 1985 and April 15, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 55T15, 55Q45; Secondary 55S10, 55N22.

©1987 American Mathematical Society
0002-9947/87 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
such that w_i restricts nontrivially to $\text{Ext}_{E_1(Q)}(\mathbb{Z}/2, \mathbb{Z}/2)$, corresponding to the class $v_i^{2i+1} \in \pi_*(BP)$.

We hereafter denote w_i by $v_i^{2i+1} \in \text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)$. For $k > i$, there is also some power of v_i present. In fact, we have the following:

Theorem B. For k any positive integer, there exist positive integers N_1, N_2, \ldots, N_k such that

$$\mathbb{Z}/2 \left[h_0, v_1^{(4N_1)}, v_2^{(8N_2)}, \ldots, v_i^{(2i+1N_i)}, \ldots, v_k^{(2k+1N_k)} \right] \subseteq \text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2).$$

Note that N_i also depends on the value of k. Note also that N_k can be chosen to be 1 by Theorem A. In particular, Theorem B implies that for all $k \geq i$, some power of v_i^{2i+1} is present in $\text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)$, with all of its powers nontrivial. For $k > i$, this choice of v_i^s is not unique. For each $k \geq i$ we localize $\text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)$ with respect to v_i. This gives a map

$$f_i: \text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2) \to \lim_{\to k} \left[\text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)(v_i^{-1}) \right],$$

which enables us to define the following concept.

Definition (3.8). $x \in \text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)$ is v_i-periodic if $f_i(x) \neq 0$, and is v_i-torsion otherwise.

Notice that the above definition is equivalent to the following: if $q_k^*: \text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2) \to \text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)$ denotes the natural projection, then $x \in \text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)$ is v_i-periodic if there exists a $K > 0$ such that $q_k^n(x)(v_i^{2i+1N_i})^s \neq 0$ for all $s \geq 0$, for all $k \geq K$.

Our main theorem is

Theorem C. If $x \in \text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)$ is v_i-periodic, then x is also v_{i+k}-periodic for all $k > 0$.

Equivalent, if $x \in \text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)$ is v_i-torsion, then x is also v_k-torsion for all k such that $0 \leq k \leq n$.

Analogous results are known for elements $x \in M$, where M is a BP_*BP-comodule [9]. Our proof of Theorem C is a simplified version of Johnson and Yosimura’s proof of the BP-setting result.

Theorem C allows us to define a filtration

Corollary D. There is a filtration, which we call the chromatic filtration,

$$\text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2) = F_{-1} \supset F_0 \supset F_1 \supset \cdots \supset F_i \supset \cdots$$

such that $F_i - F_{i+1}$ is the set of classes that are v_{i+1}-periodic but v_k-torsion for all $k \leq i$.

This paper is organized as follows. In §2, we construct our basic tool, which is used for calculating Ext-groups. It is a variant of the Koszul resolution. In §3, we use this resolution to produce the periodicity elements of Theorem A. We also prove
Theorem B and develop the concept of v_i-periodicity in $\text{Ext}_{A}(\mathbb{Z}/2, \mathbb{Z}/2)$. In §4, we construct certain operations

$$r_i: \text{Ext}^{v_i}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2) \to \text{Ext}^{v_i, 2^i-1}{A_{k-1}}(\mathbb{Z}/2, \mathbb{Z}/2)$$

for $k \geq 1$, and state their basic properties. These are related to a certain decomposition of $A//A_k$ given in [11]. Finally, in §5, we use these operations to prove Theorem C and deduce Corollary D from it.

Throughout the paper, we use cohomology with $\mathbb{Z}/2$ coefficients. By “space”, we mean a connective spectrum localized at the prime 2. Odd primary analogs of these results are known, and will be discussed elsewhere. These results form the basis of the first chapter of the second author’s Ph.D. thesis, completed at Northwestern University in 1984. We would like to thank Wolfgang Lellmann, Ralph Cohen and Mike Hopkins for many helpful discussions. We also thank the referee for his helpful comments and for pointing out an error in the original proof.

2. Koszul-type resolutions for calculating Ext-groups. In this section, we develop the machinery necessary to produce the periodicity elements in $\text{Ext}_{A}(\mathbb{Z}/2, \mathbb{Z}/2)$ for $i \geq 1$. The basic tool used is a variant of the Koszul resolution [8] in which one “resolves” a polynomial algebra using an exterior algebra. A more concise account of this material appears in [7].

We begin by constructing the Koszul resolution complex. This will be an exact sequence to which the functor $\text{Ext}_{A}(_, \mathbb{Z}/2)$ will be applied to get a spectral sequence. We recall that the dual of the Steenrod algebra, A^*, is a polynomial algebra $\mathbb{Z}/2[\xi_1, \xi_2, \ldots]$, where the degree of ξ_i is $2^i - 1$. Note that A^* is both a right and left module over A, with the actions given by $Sq(\xi_k) = \xi_k + \xi_{k-1}$ and $(\xi_k)Sq = \xi_k + \xi_{k-1}$, where $Sq = \sum Sq^l$. It is shown in [14] that $\chi(A//A_{-1})^* \cong \mathbb{Z}/2[\xi_{2^i+1}, \xi_{2^i+2}, \ldots, \xi_{j+1}, \xi_{j+2}, \xi_{j+3}, \ldots]$, where χ denotes the canonical antiautomorphism of the Steenrod algebra and $A//A_i$ denotes $A \otimes A \mathbb{Z}/2$. This isomorphism is one of algebras and left A-modules, where the left A-action on the polynomial algebra is given by the above formula, extended by the Cartan formula. This result generalizes to show that $\chi(A//A_{-1})^* \cong E(\xi_{2^i-1}, \xi_{2^i+1}, \ldots, \xi_{j+1})$, both as algebras and as left A-modules with the above A-action. If we denote $\chi(\xi_k)$ by ξ_k, then we see that $(A//A_{-1})^* \cong E(\xi_{2^i-1}, \xi_{2^i+1}, \ldots, \xi_{j+1})$, with the A-action now being given on the right: $\xi_{2^i-1}Sq^{2^i} = \xi_{2^i-1}$ and $\xi_{2^i-1}Sq^{2^i} = 1$, extended by the Cartan formula. For convenience, we denote the exterior algebra $(A//A_{-1})^*$ by $E(i)$. It is important to note that $E(i)$ is an A-module but not an A_{i-1}-module. For example, $(A_1//A_0)^* \cong E(\xi_1, \xi_2)$ cannot be an A-module since $Sq^2 Sq^1 Sq^2$ is nonzero on the top class $\xi_1^2 \xi_2$. By the Adem relations, $Sq^2 Sq^1 Sq^2 = Sq^1 Sq^3 + Sq^4$, so that if $E(1) \cong (A_1//A_0)^*$, it must have a nonzero class of degree 1 or 4, which it does not.

As an A_{i-1}-module, we can decompose $E(i)$ into a direct sum: $E(i) \cong \oplus_{\sigma \geq 0} E_\sigma(i)$, where $E_\sigma(i)$ is given as a $\mathbb{Z}/2$-vector space as the span of monomials of length σ, $x_1 x_2 \cdots x_\sigma$, where each $x_j \in (\xi_1^2, \xi_2^{2^1-1}, \ldots, \xi_{j+1})$ and $x_j \neq x_k$ for $j \neq k$. Each of these $E_\sigma(i)$'s is closed under the A_{i-1}-action inherited from $E(i)$ and is also an A-module.
We now define the polynomial algebra we will use to resolve $E(i)$. Let $R(i) = \mathbb{Z}/2[\xi_1^{2^i}, \xi_2^{2^i - 1}, \ldots, \xi_{i+1}]$, the graded polynomial algebra on generators $\xi_1^{2^i}, \xi_2^{2^i - 1}, \ldots, \xi_{i+1}$. This is an A-module, with right action given by $\xi_i^{2^j} \cdot \text{Sq}^r = \xi_i^{2^j \cdot r}$ and $\xi_i^{2^r} \cdot \text{Sq}^r = 1$, extended by the Cartan formula. If we consider just the A_{i-1}-module structure that this imposes on $R(i)$, then we can decompose this into a direct sum: $R(i) \cong \bigoplus_{\sigma \geq 0} R_\sigma(i)$. Here, $R_\sigma(i)$ is given as a $\mathbb{Z}/2$-vector space as the span of monomials of length σ in $(\xi_1^{2^i}, \xi_2^{2^i - 1}, \ldots, \xi_{i+1})$. Each of the $R_\sigma(i)$'s is a separate A-module.

To construct our resolution, we form the right A_r-modules $E_r(i) \otimes \mathbb{Z}/2 R_s(i)$ where $r, s > 0$. Here $\otimes \mathbb{Z}/2$ means tensoring over $\mathbb{Z}/2$ with the A_r-action given by the Cartan formula. Actually, each of these $E_r \otimes \mathbb{Z}/2 R_s$'s is an A-module, but we need only the A_r-module structure. We construct maps $k_{r,s}: E_r \otimes \mathbb{Z}/2 R_s \rightarrow E_{r-1} \otimes \mathbb{Z}/2 R_{s+1}$ by

$$k_{r,s}(x_1 x_2 \cdots x_r \otimes p) = \sum_{j=1}^{r} x_1 \cdots \hat{x}_j \cdots x_r \otimes x_j p,$$

for all $r > 1, s > 0$.

To see that these are A_r-maps, consider

$$k_{r,s}[(x_1 x_2 \cdots x_r \otimes p) \text{Sq}^m] = k_{r,s} \left[\sum_{j,M} (x_{b_1} x_{b_2} \cdots x_{b_r}) \otimes x_{b_j} p \text{Sq}^{m-\Sigma a_i} \right],$$

which is exactly $[k_{r,s}(x_1 x_2 \cdots x_r \otimes p)]\text{Sq}^m$. We compose these A_r-module maps into a sequence, recalling that $E_r = 0$ for $r > i + 1$:

$$0 \rightarrow E_{i+1} \otimes R_s \rightarrow E_i \otimes R_{s+1} \rightarrow \cdots \rightarrow E_0 \otimes R_{s+i+1} \rightarrow 0.$$

These sequences are exact, as one can check, although this is quite tedious. We can get around this by summing the sequences over a constant s:

$$0 \rightarrow E_{i+1} \otimes R_{s-1} \rightarrow E_i \otimes R_s \rightarrow E_{i-1} \otimes R_{s+1} \rightarrow \cdots$$

$$0 \rightarrow E_{i+1} \otimes R_{s-1} \rightarrow E_i \otimes R_s \rightarrow E_{i-1} \otimes R_{s+1} \rightarrow \cdots$$

The result is a sequence of A_i-modules:

$$(2.1) \quad 0 \rightarrow \mathbb{Z}/2 \rightarrow E(i) \otimes R_0(i) \rightarrow E(i) \otimes R_1(i) \rightarrow \cdots$$
which is exact by the classical result of Koszul. The differential is given by

$$\partial_s [(x_1 x_2 \cdots x_r) \otimes p] = \sum_{j=1}^{r} (x_1 \cdots \hat{x}_j \cdots x_r) \otimes x_j p.$$

Denote the dual of $R_\sigma(i)$ by $N_\sigma(i)$. Then, dualizing the exact sequence of right A_r-modules in (2.1), we obtain

Lemma (2.2). The sequence

$$0 \leftarrow \mathbb{Z}/2 \leftarrow A_i / A_{i-1} \otimes N_0(i) \leftarrow \cdots \leftarrow A_i / A_{i-1} \otimes N_\sigma(i) \leftarrow \cdots$$

is exact as a sequence of left A_r-modules.

We need the following lemma.

Lemma (2.3). For any A_r-module M, $A_i / A_{i-1} \otimes _{Z/2} M \cong A_i \otimes _{A_{i-1}} M$, as left A_r-modules, where "$\otimes _{A_{i-1}}"$ means tensor over A_{i-1} with the A_r-action taken on the left factor.

A proof of this lemma can be found in [19].

We have now completed the proof of the following result.

Theorem (2.4). For the family of A-modules $N_\sigma(i), \sigma \geq 0$, and A_i-maps ∂_s: $A_i \otimes _{A_{i-1}} N_{\sigma+1}(i) \to A_i \otimes _{A_{i-1}} N_\sigma(i)$ defined above, the sequence

$$0 \leftarrow \mathbb{Z}/2 \leftarrow A_i \otimes _{A_{i-1}} N_0(i) \leftarrow A_i \otimes _{A_{i-1}} N_1(i) \leftarrow \cdots \leftarrow A_i \otimes _{A_{i-1}} N_\sigma(i) \leftarrow \cdots$$

is exact as a sequence of A_r-modules.

We refer to this as the Koszul-type resolution for $\mathbb{Z}/2$ over A_i (KR_i or KR if i is understood).

Also as an easy consequence of 2.4 we have

Corollary (2.5). For M any left A_r-module, the complex

$$0 \leftarrow M \leftarrow A_i \otimes _{A_{i-1}} N_0(i) \otimes _{Z/2} M \leftarrow \cdots \leftarrow A_i \otimes _{A_{i-1}} N_\sigma(i) \otimes _{Z/2} M \leftarrow \cdots$$

is exact ($KR_i(M)$).

The usefulness of such resolutions is that one can apply various functors to them to obtain spectral sequences. Our goal is to produce a spectral sequence converging to $\text{Ext}_{A_r}(M, Z/2)$ for M an A_r-module. To this end, we divide the complex of (2.4) into short exact sequences:

$$0 \leftarrow \mathbb{Z}/2 \leftarrow \cdots \leftarrow A_i \otimes _{A_{i-1}} N_\sigma(i) \leftarrow \cdots$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We apply the functor $\text{Ext}_{A_i}^{-\sigma,i}(_, \mathbb{Z}/2)$ to (2.6). This associates to each short exact sequence $0 \to M_a \to A_i \otimes A_{i-1} N_a \to M_{a-1} \to 0$ a long exact sequence:

$$\cdots \to \text{Ext}_{A_{i-1}}^j(M_{a-1}, \mathbb{Z}/2) \xrightarrow{j} \text{Ext}_{A_i}^{-\sigma,i}(A_i \otimes A_{i-1} N_a, \mathbb{Z}/2) \xrightarrow{k} \text{Ext}_{A_i}^{-\sigma+1,i}(M_{a-1}, \mathbb{Z}/2) \to \cdots$$

(2.7)

We fit these long exact sequences together to form an exact couple:

$$D_1^{s,t} = \text{Ext}_{A_i}^{-\sigma,i}(M_{a-1}, \mathbb{Z}/2),$$

$$E_1^{s,t} = \text{Ext}_{A_i}^{-\sigma,i}(A_i \otimes A_{i-1} N_a, \mathbb{Z}/2) \cong \text{Ext}_{A_{i-1}}^{r-\sigma,i}(N_a, \mathbb{Z}/2)$$

by the change of rings isomorphism. The maps in the long exact sequence (2.7) give the maps in the exact couple

$$\begin{array}{cccc}
s & t & \sigma & s + t \sigma + t \sigma + 1, t \\
\sigma & s & t & \sigma + t \\
j: & (1, 0, 0) & +1 & 1, 0, 0 \\
k: & (0, 0, 0) & 0 & 0, 0, 0 \\
\end{array}$$

Thus, $d_r: E_r^{sigma,t} \to E_r^{sigma+r,s+1,t}.$

To see to what the spectral sequence converges, one forms a double complex, taking a projective resolution of each term of the complex (2.4). The resulting Grothendieck-type spectral sequence clearly converges to $\text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2).$ This completes the proof of the following result.

Theorem (2.8). For i any positive integer, there is a family of A-modules, $N_a(i),$ $\sigma \geq 0,$ defined above, such that for any A_i-module M there is a trigraded spectral sequence converging to $\text{Ext}_{A_i}(M, \mathbb{Z}/2), with$

$$E_1^{sigma,t} \equiv \text{Ext}_{A_{i-1}}^{r-\sigma,i}(N_a(i) \otimes M, \mathbb{Z}/2).$$

This is called the Koszul spectral sequence for M over A_i (KSS(M)). Note that a trigraded spectral sequence is a family of spectral sequences, one for each $t.$

Theorem (2.8) allows us to compute $\text{Ext}_{A_i}(M, \mathbb{Z}/2)$ in terms of

$$\text{Ext}_{A_{i-1}}^{r-\sigma,i}(N_a(i) \otimes M, \mathbb{Z}/2).$$

This makes calculation of $\text{Ext}_{A_i}(M, \mathbb{Z}/2)$ very easy since $\text{Ext}_{A_i}(-, \mathbb{Z}/2)$ is quite simple to compute. $\text{Ext}_{A_2}^r(M, \mathbb{Z}/2)$ is also fairly tractable for reasonable A_2-modules M, as seen in [7], where $\text{Ext}_{A_2}(H^*RP_0^2, \mathbb{Z}/2)$ is calculated for all $N.$ One should note that the d_1-differentials in the KSS are induced from the maps ∂_σ of the complex (2.4). These are A_i-maps, but are not extended A_{i-1}-maps. That is, ∂_σ is not given as $\text{id}_{A_i} \otimes (N_a \leftarrow N_{a+1})$ for any A_{i-1}-map $f.$ Thus the d_1-differential in the KSS need not respect the Yoneda product structure in $\text{Ext}_{A_{i-1}}(-, \mathbb{Z}/2),$ although there is a product present.
We conclude this section with an easy proof of the well-known "ledge theorem."

Theorem (2.9) ("Ledge Theorem"). Let M be a finite A_r-module such that $M_r = 0$ for $r > m$. Then $\text{Ext}^{2s\sigma}_{A_r}(M, \mathbb{Z}/2) = 0$ for $t - s > (2^{i+1} - 2)s + m$.

Proof. We use induction on i, with the initial case, $i = 1$, clear from calculating by a minimal resolution. We assume that $\text{Ext}^{2s\sigma}_{A_{r-1}}(P, \mathbb{Z}/2) = 0$ for $t - s > (2^r - 2)s + m$, for P any A_{r-1}-module having $P_r = 0$ for $r > m$. Consider any A_r-module M satisfying the hypothesis of the theorem. Then there is a KSS:

$$\text{Ext}^{2s\sigma}_{A_{r-1}}(N_\sigma(i) \otimes M, \mathbb{Z}/2) \to \text{Ext}^{2s\sigma}_{A_r}(M, \mathbb{Z}/2).$$

The top class of $N_\sigma \otimes M$ is in dimension $\leq (2^{i+1} - 1)s + m$, by our definition of N_σ. Thus,

$$\text{Ext}^{2s\sigma}_{A_{r-1}}(N_\sigma(i) \otimes M, \mathbb{Z}/2) = 0 \quad \text{for} \quad t - s + \sigma > (2^i - 2)(s - \sigma) + (2^{i+1} - 2)s + m$$

i.e.

$$t - s > (2^i - 2)s + 2^i \sigma + m.$$

Since $0 \leq \sigma \leq s$, we have $\text{Ext}^{2s\sigma}_{A_r}(M, \mathbb{Z}/2) = 0$ for $t - s > (2^{i+1} - 2)s + m$.

3. Some periodicity elements.

In this section, we use the machinery developed in §2 to construct certain periodicity elements in $\text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)$. Our first main result is

Theorem A. For i any positive integer, there exists a unique nonzero divisor $w_i \in \text{Ext}^{2s\sigma}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)$ such that w_i restricts nontrivially to $\text{Ext}^{2s\sigma}_{E[Q]}(\mathbb{Z}/2, \mathbb{Z}/2)$, corresponding to the class $v_i^{2s\sigma} \in \pi_*\text{(BP)}$.

We hereafter denote w_i as $v_i^{2s\sigma-1} \in \text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)$.

Proof. Consider the module $R_\sigma(i)$ defined in §2, with $\sigma = 2^{i+1}$. The top class in $R_\sigma(i)$ is $\xi_{i+1} \mid \xi_{i+1} \mid \cdots \mid \xi_{i+1} = (\xi_{i+1})^\sigma$. Define maps $\mathbb{Z}/2 \xrightarrow{g} R_\sigma(i) \xrightarrow{h} \mathbb{Z}/2$ by $g(1) = (\xi_{i+1})^\sigma$, $h[(\xi_{i+1})^\sigma] = 1$, both 0 otherwise. $\text{Sq}^{2s\sigma-1} = \text{Sq}^\sigma$ acts nontrivially on the class $(\xi_{i+1})^\sigma$, but A_i acts trivially on it since A_i acts trivially on any 2^{i+1}st power. So h and g are A_i-module maps that split the class $(\xi_{i+1})^\sigma$ off from $R_\sigma(i)$. We can tensor with $E(i)$ to get $E(i) \xrightarrow{\tilde{g}} E(i) \otimes R_\sigma(i) \xrightarrow{\tilde{h}} E(i)$. Dualizing, we get

$$A_i \otimes_{A_{i-1}} \mathbb{Z}/2 \xrightarrow{\tilde{h}} A_i \otimes_{A_{i-1}} N_\sigma(i) \xrightarrow{\tilde{g}} A_i \otimes_{A_{i-1}} \mathbb{Z}/2.$$

This extends to a splitting of complexes:

$$A_i \otimes_{A_{i-1}} \mathbb{Z}/2 \xrightarrow{\tilde{a}_{i-1}} A_i \otimes_{A_{i-1}} N_\sigma - 1 \otimes_{A_{i-1}} N_\sigma \xrightarrow{\tilde{a}_i} A_i \otimes_{A_{i-1}} N_\sigma + 1 \otimes_{A_{i-1}} N_\sigma \xrightarrow{\tilde{a}_{i+1}} \cdots$$

$$\cdots \text{with} \quad \cdots \xrightarrow{\tilde{a}_{i-2}} A_i \otimes_{A_{i-1}} N_\sigma - 1 \xrightarrow{\tilde{a}_{i-1}} A_i \otimes_{A_{i-1}} N_\sigma \xrightarrow{\tilde{a}_i} A_i \otimes_{A_{i-1}} N_\sigma + 1 \xrightarrow{\tilde{a}_{i+1}} \cdots$$

$$A_i \otimes_{A_{i-1}} \mathbb{Z}/2 \xrightarrow{\tilde{a}_0} A_i \otimes_{A_{i-1}} N_1 \xrightarrow{\tilde{a}_1} \cdots$$
Here, \(h_i(x \otimes y) = h(x) \otimes (\zeta_{i+1})^{\alpha} \cdot r \) and
\[
g_i(x \otimes y) = \begin{cases} x \otimes r & \text{if } y = (\zeta_{i+1})^{\alpha} \cdot r, \\ 0 & \text{if } (\zeta_{i+1})^{\alpha} \cdot y. \end{cases}
\]
Also, it is understood that \(N_0(i) \equiv \mathbb{Z}/2 \). Recall that the KSS for \(\text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2) \) is obtained by applying \(\text{Ext}^{\alpha}_{A_i}(-, \mathbb{Z}/2) \) to the KR complex. Our diagram (3.2) is a splitting of that complex. In fact, let \(g' \) denote the composition
\[
A_i \otimes_{A_{i-1}} N_{\alpha} \xrightarrow{g} A_i \otimes_{A_{i-1}} \mathbb{Z}/2 \xrightarrow{\text{augment}} \mathbb{Z}/2.
\]
Then
\[
g' \in \text{Hom}_{A_i}^{-1}(A_i \otimes_{A_{i-1}} N_{\alpha}, \mathbb{Z}/2) = \text{Ext}^{\alpha}(A_i \otimes_{A_{i-1}} N_{\alpha}, \mathbb{Z}/2),
\]
where \(t = 2^{i+1}(2^{i+1} - 1) \). So \(g' \) arises in the \(E_1 \)-term of the KSS: \(g' \in E_1^{t,2^{i+1},t} \). To see that the class given by \(g', (g') \), is a cycle in the KSS, note that \((e \otimes (\zeta_{i+1})^{\alpha}) \) is in the image of the map
\[
\text{Ext}_{A_i}^{-1}(M_{\alpha+1}, \mathbb{Z}/2) \to \text{Ext}_{A_i}^{-1}(A_i \otimes_{A_{i-1}} N_{\alpha}, \mathbb{Z}/2) \quad \text{(diagram 2.6)}.
\]
Thus \((g') \) is a cycle by standard homological algebra arguments. Further, \((g') \) is never a boundary since \(d_i(x) = (g') \) implies that \(x \) lies in a subquotient of \(\text{Ext}^{\alpha-1}(N_{\alpha-r}, \mathbb{Z}/2) \), which is zero for \(r < 2^{i+1} \) by the ledge theorem. Thus, \((g') \) projects to a nontrivial class \(w_i \in \text{Ext}^{2^{i+1}+1}(\mathbb{Z}/2, \mathbb{Z}/2) \). This class is a nonzero divisor in \(\text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2) \) because it is obtained from a full splitting of complexes. More precisely, the Yoneda product \(w_i \cdot a = 0 \) whenever \(a \neq 0 \) in \(\text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2) \).

We identify this class \(w_i \) in the setting of \(\pi_*(BP) = \mathbb{Z}(v_1, v_2, \ldots) \). Consider the Baas-Sullivan spectrum \(BP(i) \) [3], where \(\pi_*(BP(i)) = \mathbb{Z}(v_1, v_2, \ldots) \). The mod 2 cohomology is given by \(H^*(BP(i)) = A \otimes_{E(Q_0, Q_1, \ldots, Q_i)} \mathbb{Z}/2 \), where \(Q_j \) denotes the Milnor generator, and the class connecting the cohomology and the homotopy collapses:
\[
E_2^{**} = \text{Ext}^{**}(H^*(BP(i)), \mathbb{Z}/2) = \text{Ext}^{**}(A \otimes_{E(Q_0, Q_1, \ldots, Q_i)} \mathbb{Z}/2, \mathbb{Z}/2)
\]
by change of rings
\[
\cong \mathbb{Z}/2[v_0, v_1, v_2, \ldots, v_i] \Rightarrow \pi_*(BP(i)) = \mathbb{Z}(v_0, v_1, v_2, \ldots, v_i),
\]
since \(h_0 \) corresponds to multiplication by 2. We can think of \(H^*(BP(i)) \) as the extended \(A \)-module \(A \otimes_{E(Q_0, Q_1, \ldots, Q_i)} \mathbb{Z}/2 \) since \(E(Q_0, Q_1, \ldots, Q_i) \) is a subalgebra of \(A \). Thus,
\[
\text{Ext}_{A_i}(H^*(BP(i)), \mathbb{Z}/2) = \text{Ext}_{A_i}(A_i \otimes_{E(Q_0, Q_1, \ldots, Q_i)} \mathbb{Z}/2, \mathbb{Z}/2).
\]
Note that \(A_i \otimes_{E(Q_0, Q_1, \ldots, Q_i)} \mathbb{Z}/2 \) is the double of \(A_{i-1} \), as an \(A_i \)-module and as an algebra. By this we mean that \(A_i \otimes_{E(Q_0, Q_1, \ldots, Q_i)} \mathbb{Z}/2 \) is isomorphic to the image of \(A_{i-1} \) under the doubling homomorphism in \(A \) [16]. Thus we have the class for \(BP(i) \):
\[
E_2^{**}(BP(i)) = \text{Ext}^{**}(\mathcal{D}A_{i-1}, \mathbb{Z}/2) \to \pi_*(BP(i)) = \mathbb{Z}(v_0, v_1, v_2, \ldots, v_i).
\]
Hence, there is a class at \(s = 2^i + 1, \ t = 2^i + (2^i + 1 - 1) \) in \(\text{Ext}_A(\mathcal{D} \mathcal{A}_{i-1}, \mathbb{Z}/2) \) representing \(v^i_{i+1} \in \pi_*(BP(\langle i \rangle)) \). The augmentation \(\mathcal{D} \mathcal{A}_{i-1} \rightarrow \mathbb{Z}/2 \) induces a map

\[
\text{Ext}^s_{A_*}(\mathbb{Z}/2, \mathbb{Z}/2) \xrightarrow{j^*} \text{Ext}^s_{A_*}(\mathcal{D} \mathcal{A}_{i-1}, \mathbb{Z}/2) \]

Then \(j^*w_i = (v^i_{2^i+1}) \). This follows since the May spectral sequence for \(\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) shows that \(w_i \) is the only nontrivial class present in the bigrading \(s, t = 2^i + 1, 2^i + (2^i + 1 - 1) \). Also \((v^i_{2^i+1}) \) is the unique class in \(\text{Ext}_A(\mathcal{D} \mathcal{A}_{i-1}, \mathbb{Z}/2) \) at that bigrading. Both have the same May SS representative: \(b^s_{0,2^i+1} \). Since both classes are nontrivial, we have established that \(j^*(w_i) = (v^i_{2^i+1}) \). This completes the proof of Theorem A.

We now use the classes \(v^i_{2^i+1} \in \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) to produce periodicity operators in the cohomology of the Steenrod algebra. J. F. Adams was the first to note the existence of periodic phenomena in the \(E_2 \)-term of the \(\text{Ext} \) [1]. In that paper, he constructed an element corresponding to \(v^1_1 \) in \(\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \). Further, he showed that \(v^2_1 \in \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) for \(k \geq 2 \). Using this, a periodicity operator is defined:

\[
\text{Ext}^s_{A_*}(\mathbb{Z}/2, \mathbb{Z}/2) \xrightarrow{P^k} \text{Ext}^{s+2^i + 3 \cdot 2^i}_{A_*}(\mathbb{Z}/2, \mathbb{Z}/2)
\]

(3.3) \(\downarrow q^s \quad \downarrow q^s \)

\[
\text{Ext}^s_{A_*}(\mathbb{Z}/2, \mathbb{Z}/2) \xrightarrow{v^2_1} \text{Ext}^{s+2^i + 3 \cdot 2^i}_{A_*}(\mathbb{Z}/2, \mathbb{Z}/2)
\]

\(P^kx \) is defined whenever \(q^s(x) \neq 0 \), with \(P^kx \) being the coset pulled back from \(v^k_{2^k+1} \cdot q^s(x) \). This can be expressed as a Massey product: \(P^1x = \langle h_3, h^k_0, x \rangle \), iterated to give \(P^k \) for \(k > 1 \). This operator is an isomorphism in \(\text{Ext}^s_{A_*}(\mathbb{Z}/2, \mathbb{Z}/2) \) in a neighborhood of the line of slope \(\frac{1}{2} \). An element \(x \in \text{Ext}(\mathbb{Z}/2, \mathbb{Z}/2) \) is periodic under the Adams operator if \(P^kx \neq 0 \) for \(k \geq 1 \).

Our goal is now to define the notion of \(v_i \)-periodicity in \(\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) using the elements \(v^i_{2^i+1} \in \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) constructed in the proof of Theorem A. To begin, we need a result along the lines of Adams’ proof that \(v^1_1 \) lives in \(\text{Ext}_{A_*}, \text{Ext}_{A_*}^2, \ldots, \) up to \(\text{Ext}_{A_*}^k, \ k \geq 2 \).

\textbf{Theorem B.} For \(k \) any positive integer, there exists a sequence of positive integers \(N_1, N_2, \ldots, N_k \) such that

\[
\mathbb{Z}/2 \left[h_0, v^1_{4N_1}, v^2_{8N_2}, \ldots, v^i_{2^i+1N_i}, \ldots, v^k_{2^k+1N_k} \right] \subset \text{Ext}_{A_*}(\mathbb{Z}/2, \mathbb{Z}/2).
\]

Note that \(N_i \) also depends on the value of \(k \). Also note that \(N_k \) can be chosen to be \(1 \) by Theorem A.

\textbf{Proof.} The following result is proved in [12] by Lin. Another proof was presented later by Wilkerson in [18].

\textbf{Theorem (3.4).} If \(B \) is a Hopf subalgebra of a finite, graded, connected, cocommutative Hopf algebra \(A \), then the restriction map

\[
i^*: \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \rightarrow \text{Ext}_B(\mathbb{Z}/2, \mathbb{Z}/2)/\text{nilpotents}
\]

is nonzero in infinitely many positive degrees.
Wilkerson’s proof uses the natural action of the Steenrod algebra in the Lyndon-Hochschild-Serre spectral sequence, together with the observation that the cohomology of a finite, connected, cocommutative Hopf algebra is Noetherian. To apply this theorem to our case, we note that there are exterior subalgebras of \(A_i, E(Q_0), E(Q_1), E(Q_0, Q_1), \ldots, E(Q_0, Q_1, \ldots, Q_i) \). Apply Lin’s theorem with \(A = A_k \) and \(B = E(Q_i) \). Now \(\text{Ext}_{E(Q_0, Q_1, \ldots, Q_i)}(\mathbb{Z}/2, \mathbb{Z}/2) \cong \mathbb{Z}/2[h_0, v_1, \ldots, v_i] \). Define the class \(v_i^N \in \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) to be the coset of elements that map to the class \(v_i^N \in \text{Ext}_{E(Q_0, Q_1, \ldots, Q_i)}(\mathbb{Z}/2, \mathbb{Z}/2) \cong \mathbb{Z}/2[h_0, v_1, \ldots, v_i] \). This must be nontrivial for some sufficiently large \(N \), completing the proof of Theorem B.

Remarks.

1. One should note that \(h_0 \) lives in all \(\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \)’s.

2. While \(v_i^{2^{i+1}} \) is an element in \(\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \), \(v_i^{2^{i+1} N_i} \) is a coset in \(\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) for \(k > i \).

3. The natural projections

\[
p_{k-1}: \text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2) \to \text{Ext}_{A_{k-1}}(\mathbb{Z}/2, \mathbb{Z}/2)
\]

satisfy

\[
p_{k-1}(v_i^N) \subseteq v_i^N \in \text{Ext}_{A_{k-1}}(\mathbb{Z}/2, \mathbb{Z}/2).
\]

This follows since the restriction maps and projections are induced from:

\[
\begin{array}{ccc}
E(Q_1, Q_2, \ldots, Q_{i-1}) & \uparrow & E(Q_1, Q_2, \ldots, Q_i) \\
\downarrow & & \downarrow \\
A_{i-1} & \uparrow & A_i
\end{array}
\]

Given \(k > i \), the smallest power of \(v_i^{2^{i+1}} \) that could be present in \(\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) is \(2^{k-i+1} \). If any smaller power were present, then it would be in the image of \(\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) by the Adams approximation theorem [1]. This is impossible, since all powers of \(v_i \) must support an \(h_0 \)-tower, contradicting the Adams edge theorem [1].

We can summarize these results in the following tower.

\[
\begin{array}{ccc}
\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) & \xleftarrow{\text{lim}_{k}} & \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \\
\downarrow & \downarrow & \downarrow \\
\vdots & \vdots & \vdots \\
p_k & p_k & p_k \\
\end{array}
\]

\[
(\gamma_i^{2^{i+1}})^{M_k} \subseteq \text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2)
\]

(3.5)

\[
(\gamma_i^{2^{i+1}})^{M_{k-1}} \subseteq \text{Ext}_{A_{k-1}}(\mathbb{Z}/2, \mathbb{Z}/2)
\]

\[
v_i^{2^{i+1}} \in \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2)
\]

In (3.5), \(M_k \geq M_{k-1} \) and \(\text{lim } M_k = \infty \).
We know, then, that for \(k \geq i \), there is a polynomial algebra on \(v_i^{2i+1}N_i \) present in \(\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2) \). It is reasonable to ask what is the lowest power of \(v_i^{2i+1} \) that can live in \(\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2) \). There is substantial evidence that the answer is this.

Conjecture (3.6). \(v_i^{2i+1+m} \) is present in \(\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2) \) if and only if \(i \leq i \leq 2i + m \).

To define the notion of \(v_i \)-periodicity and \(v_i \)-torsion in \(\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2) \), we will localize each \(\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2) \) with respect to \(v_i \) for each \(k \geq i \). Since these localizations commute with the natural projections (Remark (3)) they must commute with the inverse limit. To be clear about what we mean by localization with respect to the coset \(v_i^N \), let \(N \) be such that \(v_i^N \) is the smallest power of \(v_i^{2i+1} \) present in \(\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2) \). Let \((a_1, a_2, \ldots, a_m) \) be the full coset \(v_i^N \). It is finite since \(\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2) \) is finite for any \(s, t \). We can then form the element \(a = a_1a_2 \cdots a_m \), which will be a uniquely determined element in the coset \((v_i^N)^m \). Then \(\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2)((v_i^{-1})) \) is defined as the direct limit of the sequence

\[
\text{Ext}_{A_k} \rightarrow \Sigma^{-Nm(2i+1-2)} \text{Ext}_{A_k} \rightarrow \Sigma^{-2Nm(2i+1-2)} \text{Ext}_{A_k} \rightarrow \cdots.
\]

With this in mind, we use \(\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2)((v_i^{-1})) \) to denote localization with respect to this uniquely determined power of \(v_i^{2i+1} \) in \(\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2) \). Since \(p_k-1(v_i^N) \subset v_i^N \subset \text{Ext}_{A_k}((\mathbb{Z}/2, \mathbb{Z}/2)) \), these localizations fit together into the following tower:

\[
\begin{array}{ccc}
\vdots & & \vdots \\
\downarrow p_k & & \downarrow p_k \\
\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2) & \xrightarrow{f_k} & \text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2)((v_i^{-1})) \\
\downarrow p_{k-1} & & \downarrow p_{k-1} \\
\text{Ext}_{A_{k-1}}(\mathbb{Z}/2, \mathbb{Z}/2) & \xrightarrow{f_{k-1}} & \text{Ext}_{A_{k-1}}(\mathbb{Z}/2, \mathbb{Z}/2)((v_i^{-1})) \\
\downarrow p_{k-2} & & \downarrow p_{k-2} \\
\vdots & & \vdots \\
\downarrow p_i & & \downarrow p_i \\
\text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2) & \xrightarrow{f_i} & \text{Ext}_{A_i}(\mathbb{Z}/2, \mathbb{Z}/2)((v_i^{-1})) \\
\end{array}
\]

(3.7)

Since the tower commutes, we can form the inverse limit: let

\[
V_{i}^{s, t} = \lim_{k} \left[\text{Ext}_{A_k}^{s, t}(\mathbb{Z}/2, \mathbb{Z}/2)((v_i^{-1})) \right].
\]

Then we have a map \(f_i \) given by

\[
\begin{array}{ccc}
\lim_k \text{Ext}_{A_k}^{s, i}(\mathbb{Z}/2, \mathbb{Z}/2) & \xrightarrow{f_i} & V_{i}^{s, t} \\
\end{array}
\]

|| \quad \text{def}

\[
\begin{array}{ccc}
\lim_k \text{Ext}_{A_k}^{s, i}(\mathbb{Z}/2, \mathbb{Z}/2) & \Leftarrow & \lim_k \left[\text{Ext}_{A_k}^{s, i}(\mathbb{Z}/2, \mathbb{Z}/2)((v_i^{-1})) \right].
\end{array}
\]
Definition (3.8). An element \(x \in \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) is \(v_\tau \)-periodic if \(f_j(x) \neq 0 \) and \(v_\tau \)-torsion otherwise.

Equivalently, \(x \in \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) is \(v_\tau \)-periodic if there exists an integer \(M \geq 0 \) such that \(q_{M}^*(x) \neq 0 \) for all \(s > 0 \), all \(k \geq M \). Here \(q_{M}^* : \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \to \text{Ext}_{A_{k}}(\mathbb{Z}/2, \mathbb{Z}/2) \) denotes the natural projection and \(v_j \)-torsion if there exists some \(M \geq 0 \) such that for all \(k \geq M \) there is an \(s > 0 \) with \(q_{M}^*(x) \neq 0 \) in \(\text{Ext}_{A_{k}}(\mathbb{Z}/2, \mathbb{Z}/2) \).

4. Operations on \(\text{Ext}_{A_{k}}(\mathbb{Z}/2, \mathbb{Z}/2) \). In this section, we construct certain families of operations

\[
r_j : \text{Ext}_{A_{k}}(\mathbb{Z}/2, \mathbb{Z}/2) \to \text{Ext}_{A_{k}} \left(\sum_{j=0}^{2^k+1} \mathbb{Z}/2, \mathbb{Z}/2 \right)
\]

for \(k \geq 1 \) which are used to prove Theorem C. These operations are constructed using the first stage of the resolution constructed in [11], and are related to the Quillen operations in \(\text{BP}_A \). We show how these operations act on the periodicity elements \(v_j^N \in \text{Ext}_{A_{k}}(\mathbb{Z}/2, \mathbb{Z}/2) \) constructed earlier.

The operations are induced by a map given by Theorem 5 of [11],

\[
\Phi_k : \bigoplus_{m \geq 0} \Sigma^m \mathbb{Z}/2 \to \mathbb{Z}/2 \bigoplus \mathbb{Z}/2 \bigoplus \ldots
\]

defined by \(\Phi_k(i_m) = \chi \text{Sq}^{m2^k} \), where \(i_m \) denotes the generator of the \(m \)th summand. The dual of this map is easily described. Recalling that

\[
A \bigoplus A_{k-1}^* \equiv \mathbb{Z}/2 \left[\mathbb{Z}/2 \bigoplus \mathbb{Z}/2 \bigoplus \ldots \right],
\]

there is an isomorphism

\[
\bigoplus_{m \geq 0} \Sigma^m \mathbb{Z}/2 \to A \bigoplus A_{k-1}^*
\]

where \(t \) is a placeholder with \(|t| = 1 \) and \(t \text{Sq} = 0 \).

Lemma (4.1). The dual of \(\Phi_k \) is given by

\[
\Phi_k : \mathbb{Z}/2 \left[\mathbb{Z}/2 \bigoplus \mathbb{Z}/2 \bigoplus \ldots \right] \to \mathbb{Z}/2 \left[\mathbb{Z}/2 \bigoplus \mathbb{Z}/2 \bigoplus \ldots \right]
\]

Here \(\Phi_k \) is defined on the generators by

\[
\phi_k \left(\tilde{y}_j^{2^n} \right) = \tilde{y}_j^{2^n} + \tilde{y}_j^{2^n-t} \quad \text{where} \quad n = \begin{cases} k + 2 - j & \text{if } j < k + 2, \\ 0 & \text{if } j \geq k + 2. \end{cases}
\]

Extending \(\phi_k \) over all of \(A \bigoplus A_{k-1}^* \) by multiplicativity completes the definition.

Proof. The definition of \(\Phi_k \) and an exercise in duality show that \(\phi_k \) can be computed as follows: let \(A \bigoplus A_{k-1}^* \to A^* \otimes A \bigoplus A_{k-1}^* \) denote the coaction of the dual of the Steenrod algebra on \(A \bigoplus A_{k-1}^* \). Then for \(R \) any sequence of nonnegative integers, there exist integers \(e_m \) and sequences \(R_m, I, J \), such that

\[
\phi_k \left(\epsilon^R \right) = \sum_m \epsilon_m \tilde{y}_m \tilde{y}_j^{2^n+1} \otimes \tilde{y}_m \otimes \sum_{i,j} \delta_i \otimes \delta_j.
\]
where \(\varepsilon_n = 0 \) or \(1 \) and \(i_1 = 0 \) in \(I_r \). Then \((\bar{\phi}_k)^*(\xi^R) = \bigoplus_m \varepsilon_m \xi^R_m m2^{k+1} \). This gives precisely the definition of \(\phi_k \).

Note that the map \(\phi_k \) also respects the right \(A \)-module structure involved since \((\xi_k) \text{Sq} = \xi_k + \xi_{k-1} \). Thus, \(\phi_k \) induces a map in \(\text{Ext}_A(\mathbb{Z}/2, -) \):

\[
\text{Ext}_A(\mathbb{Z}/2, (A//A_k)^*) \to \text{Ext}_A(\mathbb{Z}/2, \bigoplus_{m \geq 0} \Sigma^{m2^{k+1}}(A//A_{k-1})^*)
\]

This gives precisely the definition of \(\phi_k \).

Note that the map \(\phi_k \) also respects the right \(A \)-module structure involved since \((\xi_k) \text{Sq} = \xi_k + \xi_{k-1} \). Thus, \(\phi_k \) induces a map in \(\text{Ext}_A(\mathbb{Z}/2, -) \):

\[
\text{Ext}_A(\mathbb{Z}/2, (A//A_k)^*) \to \text{Ext}_A(\mathbb{Z}/2, \bigoplus_{m \geq 0} \Sigma^{m2^{k+1}}(A//A_{k-1})^*)
\]

\[
(4.2) \quad \text{Change of rings}
\]

\[
\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \to \bigoplus_{m \geq 0} \text{Ext}_{A_{k-1}}(\Sigma^{m2^{k+1}}\mathbb{Z}/2, \mathbb{Z}/2).
\]

Here all four objects are rings, with the ring structures on the top row inherited from those on \((A//A_k)^* \) and \(\bigoplus_{m \geq 0} \Sigma^{m2^{k+1}}(A//A_{k-1})^* \). The bottom row has ring structures given by Yoneda product. Now \(\phi_k \) is a ring homomorphism since \(\bar{\phi}_k \) is, and the change of rings isomorphism respects these structures, so that the map \(r \) is also a ring homomorphism.

We break \(r \) into its components \(r = \bigoplus_{m \geq 0} r_m \) where

\[
r_m : \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \to \text{Ext}_{A_{k-1}}(\Sigma^{m2^{k+1}}\mathbb{Z}/2, \mathbb{Z}/2).
\]

Then the ring structure of \(r \) is a Cartan formula:

\[
(4.3) \quad r_m(xy) = \bigoplus_{j=0}^{m} r_j(x) r_{m-j}(y).
\]

Notice also

\[
r_0(x) = p_{k-1}(x)
\]

where \(p_{k-1} : \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \to \text{Ext}_{A_{k-1}}(\mathbb{Z}/2, \mathbb{Z}/2) \) is induced from the inclusion. Finally, if \(x \in \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \) and \(x' = q_k(x) \in \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \), then \(r_m(x') = p_{k-1}(x') \) if \(m = 0 \), zero otherwise. This follows since the map \(\phi_k \) is a map of \(A \)-modules, so that the map induced in \(\text{Ext}_A(-, \mathbb{Z}/2) \) must respect Yoneda products with classes from \(\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \).

We now consider the action of these operations on the periodicity classes \(v_j^{2m} \subset \text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) \). To do this, we consider \(\text{Ext}_A(A//E_n, \mathbb{Z}/2) \cong \text{Ext}_{E_n}(\mathbb{Z}/2, \mathbb{Z}/2) \), where \(E_n \) denotes the exterior algebra \(E(Q_0, \ldots, Q_n) \subset A_n \). Recall that \(\text{Ext}_{E_n}(\mathbb{Z}/2, \mathbb{Z}/2) = \mathbb{Z}/2[v_0, v_1, \ldots, v_n] \), and that there is a natural restriction map \(j_n : \text{Ext}_{A_n} \to \text{Ext}_{E_n} \). Let \(K_n \) denote the kernel of \(j_n \). Then the operations constructed above act on these periodicity classes in the following manner.

Theorem (4.5). For the classes \(v_j^{2m} \in \text{Ext}_{A_n}(\mathbb{Z}/2, \mathbb{Z}/2) \) defined above,

\[
r_k(v_j^{2m}) = \begin{cases}
 v_j^{2m}/K_n & \text{if } k = 0, \\
 v_j^{2m-1}/K_n & \text{if } k = 2^{m+j-n} - 1, \\
 \text{Zero}/K_n & \text{otherwise}.
\end{cases}
\]
Proof. There is a version of the ring homomorphism r above defined for the Hopf algebra $A//E_n$ given by the formula of Lemma 4.1 for the dual $(A//E_n)^*$. This induces in Ext:

$$r: \text{Ext}_{E_n}(\mathbb{Z}/2, \mathbb{Z}/2) \rightarrow \bigoplus_{m \geq 0} \text{Ext}_{E_{n-1}}(\Sigma^m \mathbb{Z}/2, \mathbb{Z}/2)$$

just as in (4.2). Now the bar construction for calculating Ext_{E_n} begins:

$$
\begin{array}{cccc}
A//E_n^* & \rightarrow & A//E_n \otimes A^* \\
\downarrow & & \downarrow \\
A^* & \rightarrow & A \otimes A^*
\end{array}
$$

Here $d_1(\xi_n) = \sum_{i=1}^n [\xi_n - 1]^{2^i}$ which corresponds to $v_n \in \text{Ext}_{E_n}(\mathbb{Z}/2, \mathbb{Z}/2)$, where the $i = 0$ term vanishes. So

$$d_1(\xi_n) = d_1(\xi_n + \xi_{n-1} t^{2^n})$$

since d_1 is natural w.r.t. the map r induced in $A//E_n^* = d_1(\xi_n) + d_1(\xi_{n-1}) t^{2^n}$, which corresponds to $v_n + v_{n-1} t^{2^n}$. So in Ext_{E_n}, we have $r(v_n) = v_n + v_{n-1} t^{2^n}$. Extending this to $v_n^{2^n}$, and looking at the corresponding map in Ext_{A_n} completes the proof.

5. Proof of the main theorem. In this section, we prove Theorem C and derive Corollary D from it. The proof is to some extent a simplified version of Johnson and Yosimura’s proof that in a BP_*BP-comodule M, elements that are v_n-torsion are also v_k-torsion, for $0 \leq k \leq n$ [9]. Our operations

$$r_j: \text{Ext}_{A_n}(\mathbb{Z}/2, \mathbb{Z}/2) \rightarrow \text{Ext}_{A_{k+1}}(\Sigma^{J_2} \mathbb{Z}/2, \mathbb{Z}/2)$$

replace the Quillen operations of BP-theory.

We recall the statement of our main theorem.

Theorem C. If $x \in \text{Ext}_{A_n}(\mathbb{Z}/2, \mathbb{Z}/2)$ is v_n-periodic, then x is also v_{n+k}-periodic for all $k \geq 0$.

Equivalently, if $x \in \text{Ext}_{A_n}(\mathbb{Z}/2, \mathbb{Z}/2)$ is v_n-torsion, then x is also v_k-torsion for all k such that $0 \leq k \leq n$.

Proof of Theorem C. Let $x \in \text{Ext}_{A_n}(\mathbb{Z}/2, \mathbb{Z}/2)$ be v_n-torsion. Then for all k sufficiently large, $q_k(x) = \hat{x}$ is v_n-torsion in $\text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2)$. Since $x \in \text{Ext}_{A_k}(\mathbb{Z}/2, \mathbb{Z}/2)$, $r_0(\hat{x}) = r_0(q_k(x)) = p_{k-1}(\hat{x}) = q_{k-1}(x)$, and $r_m(\hat{x}) = 0$ for $m > 0$, by the remarks following (4.4). Recall that v_n^e is a coset. As before, let K_k denote the kernel of the restriction map $\text{Ext}_{A_k} \rightarrow \text{Ext}_{E_k}$ (so that K_k is bigraded). Let \tilde{v}_n^e be a fixed representative for the coset, v_n^e. Then any element in the coset can be represented as $\tilde{v}_n^e + y$, for $y \in K_n$. Then x being v_n-torsion implies that

$$\left[\prod_{y \in K_n} (\tilde{v}_n^e + y) \right]^{t} \cdot \hat{x} = 0,$$

for some t. License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
For all $m \in \mathbb{N}$, then

$$r_m\left[\prod_{y \in K} (\nabla_n^s + y)^t\right] \cdot \hat{x} = r_m\left(\prod_{y \in K} (\nabla_n^s + y)^t\right) - q_{k-1}(x) = 0.$$

For the appropriate value of m (given in 4.5), this becomes

$$\left[\prod_{z \in K} (\bar{v}_{n-1}^* + z)^t\right] \cdot q_{k-1}(x) = 0,$$

where the classes z are in K_{k-1} and $r_m(\bar{v}_{n-1}^*)$ is a particular element \bar{v}_{n-1}^* mapping to the appropriate class in Ext_{F_k}. This implies that $[\prod_{w \in K_{k-1}} (\bar{v}_{n-1}^* + w)^t] \cdot q_{k-1}(x) = 0$. This shows that $q_{k-1}(x)$ is v_{n-1}-torsion, completing the proof.

From this, we prove

Corollary D. There is a chromatic filtration

$$\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2) = F_{-1} \supset F_0 \supset F_1 \supset \cdots \supset F_i \supset \cdots$$

such that $F_i - F_{i-1}$ is the set of classes that are v_{i+1}-periodic but v_k-torsion for all $k \leq i$.

Proof. Recall that $V_i^{s,t} = \lim [\text{Ext}_A^s(Z/2, Z/2)(\Gamma_{s,t})]$, and that the map $f_i: \text{Ext}_A^s(Z/2, Z/2) \to V_i^{s,t}$ defines the v_i-torsion and periodic classes in $\text{Ext}_A^s(Z/2, Z/2)$. Define F_i to be the kernel of the map f_i for all $i \geq 0$. F_i contains F_{i+1} by Theorem C. Defining F_{-1} to be all of $\text{Ext}_A(\mathbb{Z}/2, \mathbb{Z}/2)$ completes the proof.

References

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201 (Current address of Mark Mahowald)

DEPARTMENT OF MATHEMATICS, JOHN CARROLL UNIVERSITY, CLEVELAND, OHIO 44116

Current address (Paul Shick): Department of Mathematics, University of Washington, Seattle, Washington 98195