Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval

Authors:
Louis Block and Ethan M. Coven

Journal:
Trans. Amer. Math. Soc. **300** (1987), 297-306

MSC:
Primary 58F08; Secondary 54H20, 58F20

MathSciNet review:
871677

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We say that a continuous map of a compact interval to itself is *linear Markov* if it is piecewise linear, and the set of all , where and is an endpoint of a linear piece, is finite. We provide an effective classification, up to topological conjugacy, for linear Markov maps and an effective procedure for determining whether such a map is transitive. We also consider **expanding Markov** maps, partly to motivate the proof of the more complicated linear Markov case.

**[BB]**W. Byers and A. Boyarsky,*Absolutely continuous invariant measures that are maximal*, Trans. Amer. Math. Soc.**290**(1985), no. 1, 303–314. MR**787967**, 10.1090/S0002-9947-1985-0787967-3**[BM-1]**Marcy Barge and Joe Martin,*Chaos, periodicity, and snakelike continua*, Trans. Amer. Math. Soc.**289**(1985), no. 1, 355–365. MR**779069**, 10.1090/S0002-9947-1985-0779069-7**[BM-2]**-,*Dense orbits on the interval*, preprint, 1984.**[Be-1]**Chris Bernhardt,*Simple permutations with order a power of two*, Ergodic Theory Dynam. Systems**4**(1984), no. 2, 179–186. MR**766099**, 10.1017/S0143385700002376**[Be-2]**-,*Oriented Markov graphs of the interval*, preprint, 1984.**[BC]**L. S. Block and W. A. Coppel,*Stratification of continuous maps of an interval*, Trans. Amer. Math. Soc.**297**(1986), no. 2, 587–604. MR**854086**, 10.1090/S0002-9947-1986-0854086-8**[Bl]**A. M. Blokh,*Sensitive mappings of an interval*, Uspekhi Mat. Nauk**37**(1982), no. 2(224), 189–190 (Russian). MR**650765****[CM]**Ethan M. Coven and Irene Mulvey,*Transitivity and the centre for maps of the circle*, Ergodic Theory Dynam. Systems**6**(1986), no. 1, 1–8. MR**837972**, 10.1017/S0143385700003254**[G]**F. Gantmacher,*The theory of matrices*, vol. 2, Chelsea, New York, 1959.**[MS]**M. Misiurewicz and W. Szlenk,*Entropy of piecewise monotone mappings*, Studia Math.**67**(1980), no. 1, 45–63. MR**579440****[N]**Zbigniew Nitecki,*Topological dynamics on the interval*, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 1–73. MR**670074****[P]**William Parry,*Symbolic dynamics and transformations of the unit interval*, Trans. Amer. Math. Soc.**122**(1966), 368–378. MR**0197683**, 10.1090/S0002-9947-1966-0197683-5**[RZ]**H. Rüssmann and E. Zehnder,*On a normal form of symmetric maps of [0,1]*, Comm. Math. Phys.**72**(1980), no. 1, 49–53. MR**573817****[Sa]**O. M. Šarkovs′kiĭ,*Co-existence of cycles of a continuous mapping of the line into itself*, Ukrain. Mat. Z.**16**(1964), 61–71 (Russian, with English summary). MR**0159905****[St]**P. Štefan,*A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line*, Comm. Math. Phys.**54**(1977), no. 3, 237–248. MR**0445556****[SU]**P. R. Stein and S. M. Ulam,*Non-linear transformation studies on electronic computers*, Rozprawy Mat.**39**(1964), 66. MR**0169416**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F08,
54H20,
58F20

Retrieve articles in all journals with MSC: 58F08, 54H20, 58F20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0871677-X

Article copyright:
© Copyright 1987
American Mathematical Society