Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval

Authors:
Louis Block and Ethan M. Coven

Journal:
Trans. Amer. Math. Soc. **300** (1987), 297-306

MSC:
Primary 58F08; Secondary 54H20, 58F20

DOI:
https://doi.org/10.1090/S0002-9947-1987-0871677-X

MathSciNet review:
871677

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We say that a continuous map of a compact interval to itself is *linear Markov* if it is piecewise linear, and the set of all , where and is an endpoint of a linear piece, is finite. We provide an effective classification, up to topological conjugacy, for linear Markov maps and an effective procedure for determining whether such a map is transitive. We also consider **expanding Markov** maps, partly to motivate the proof of the more complicated linear Markov case.

**[BB]**W. Byers and A. Boyarsky,*Absolutely continuous invariant measures that are maximal*, Trans. Amer. Math. Soc.**290**(1985), 303-314. MR**787967 (86j:58064)****[BM-1]**M. Barge and J. Martin,*Chaos, periodicity, and snakeline continua*, Trans. Amer. Math. Soc.**289**(1986), 355-365. MR**779069 (86h:58079)****[BM-2]**-,*Dense orbits on the interval*, preprint, 1984.**[Be-1]**C. Bernhardt,*Simple permutations with order a power of two*, Ergodic Theory Dynamical Systems**4**(1984), 179-186. MR**766099 (86d:58092)****[Be-2]**-,*Oriented Markov graphs of the interval*, preprint, 1984.**[BC]**L. Bloch and A. Coppel,*Stratification of continuous maps of an interval*, Trans. Amer. Math. Soc.**297**(1986), 587-604. MR**854086 (88a:58164)****[Bl]**A. Blokh,*On sensitive mappings of the interval*, Russian Math. Surveys**37**(1982), 203-204. MR**650765 (83k:58053)****[CM]**E. Coven and I. Mulvey,*Transitivity and the center for maps of the circle*, Ergodic Theory Dynamical Systems**6**(1986), 1-8. MR**837972 (87j:58074)****[G]**F. Gantmacher,*The theory of matrices*, vol. 2, Chelsea, New York, 1959.**[MS]**M. Misiurewicz and W. Szlenk,*Entropy of piecewise monotone mappings*, Studia Math.**67**(1980), 45-63. MR**579440 (82a:58030)****[N]**Z. Nitecki,*Topological dynamics on the interval, Ergodic theory and dynamical systems*. II (College Park, Md., 1979-80), pp. 1-73, Progress in Math., vol. 21, Birkhauser, Boston, Mass., 1982. MR**670074 (84g:54051)****[P]**W. Parry,*Symbolic dynamics and transformations of the unit interval*, Trans. Amer. Math. Soc.**122**(1966), 368-378. MR**0197683 (33:5846)****[RZ]**H. Russmann and E. Zehnder,*On a normal form of symmetric maps of*, Comm. Math. Phys.**72**(1980), 49-53. MR**573817 (81g:28020)****[Sa]**A. N. Sarkovskiĭ,*Co-existence of cycles of a continuous mapping of the line into itself*, Ukrain Math. Z.**16**(1964), 61-71. (Russian, English summary) MR**0159905 (28:3121)****[St]**P. Stefan,*A theorem of Sarkovskiĭ on the existence of periodic orbits of continuous endomorphisms of the real line*, Comm. Math. Phys.**54**(1977), 237-248. MR**0445556 (56:3894)****[SU]**P. Stein and S. Ulam,*Nonlinear transformation studies on electronic computers*, Dissertationes Math. (Rozprawy Mat.)**39**(1964), 1-66. MR**0169416 (29:6666)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F08,
54H20,
58F20

Retrieve articles in all journals with MSC: 58F08, 54H20, 58F20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0871677-X

Article copyright:
© Copyright 1987
American Mathematical Society