Sufficiency conditions for -multipliers with power weights

Authors:
Benjamin Muckenhoupt, Richard L. Wheeden and Wo-Sang Young

Journal:
Trans. Amer. Math. Soc. **300** (1987), 433-461

MSC:
Primary 42A45; Secondary 42B15

DOI:
https://doi.org/10.1090/S0002-9947-1987-0876461-9

MathSciNet review:
876461

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Weighted norm inequalities in are proved for multiplier operators with the multiplier function of Hörmander type. The operators are initially defined on the space of Schwartz functions whose Fourier transforms have compact support not including 0. This restriction on the domain of definition makes it possible to use weight functions of the form for larger than usually considered. For these weight functions, if is not an integer, a strict inequality on is shown to be sufficient for a norm inequality to hold. A sequel to this paper shows that the weak version of this inequality is necessary.

**[1]**A. P. Calderón and A. Torchinsky,*Parabolic maximal functions associated with a distribution*. II, Adv. in Math.**24**(1977), 101-171. MR**0450888 (56:9180)****[2]**A. P. Calderón and A. Zygmund,*Local properties of solutions of elliptic partial differential equations*, Studia Math.**20**(1961), 171-225. MR**0136849 (25:310)****[3]**A. Carbery, G. Gasper and W. Trebels,*On localized potential spaces*, J. Approx. Theory**48**(1986), 251-261. MR**864749 (87m:46068)****[4]**W. C. Connett and A. L. Schwartz,*The theory of ultraspherical multipliers*, Mem. Amer. Math. Soc. No. 183 (1977). MR**0435708 (55:8666)****[5]**G. Gasper and W. Trebels,*A characterization of localized Bessel potential spaces and applications to Jacobi and Hankel multipliers*, Studia Math.**65**(1979), 243-278. MR**567079 (81k:46030)****[6]**I. I. Hirschman,*The decomposition of Walsh and Fourier series*, Mem. Amer. Math. Soc. No. 15 (1955). MR**0072269 (17:257e)****[7]**R. Hunt, B. Muckenhoupt and R. Wheeden,*Weighted norm inequalities for the conjugate function and the Hilbert transform*, Trans. Amer. Math. Soc.**176**(1973), 227-251. MR**0312139 (47:701)****[8]**D. Kurtz,*Littlewood-Paley and multiplier theorems on weighted**spaces*, Trans. Amer. Math. Soc.**259**(1980), 235-254. MR**561835 (80f:42013)****[9]**B. Muckenhoupt,*Hardy's inequality with weights*, Studia Math.**34**(1972), 31-38. MR**0311856 (47:418)****[10]**-,*Necessity conditions for**multipliers with power weights*, Trans. Amer. Math. Soc.**300**503-520.**[11]**B. Muckenhoupt, R. Wheeden and W.-S. Young,*multipliers with power weights*, Adv. in Math.**49**(1983), 170-216. MR**714588 (85d:42010)****[12]**-,*Sufficiency conditions for**multipliers with general weights*, Trans. Amer. Math. Soc.**300**(1987), 463-502. MR**876462 (88e:42016b)****[13]**B. Muckenhoupt and W.-S. Young,*multipliers with weight*, Trans. Amer. Math. Soc.**275**(1983), 623-639. MR**682722 (84e:42017)****[14]**E. M. Stein,*Interpolation of linear operators*, Trans. Amer. Math. Soc.**83**(1956), 482-492. MR**0082586 (18:575d)****[15]**-,*Singular integrals and differentiability properties of functions*, Princeton Univ. Press, Princeton, N. J., 1970. MR**0290095 (44:7280)****[16]**E. M. Stein and G. Weiss,*Introduction to Fourier analysis on Euclidean spaces*, Princeton Univ. Press, Princeton, N. J., 1971. MR**0304972 (46:4102)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
42A45,
42B15

Retrieve articles in all journals with MSC: 42A45, 42B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0876461-9

Article copyright:
© Copyright 1987
American Mathematical Society