Analytic functions with prescribed cluster sets
Author:
L. W. Brinn
Journal:
Trans. Amer. Math. Soc. 300 (1987), 681693
MSC:
Primary 30D40; Secondary 30E10
MathSciNet review:
876472
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Suppose that . A monotonic boundary path (mbpath) in is a simple continuous curve , , in such that strictly monotonically as . Suppose that is a complex valued function, defined in , and that is any mbpath in . The cluster set of on is the set of those points on the Riemann sphere for which there exists a sequence of points of with and . The cluster set is denoted by . If the cluster set is a single point set, that point is called the asymptotic value of on . If the function is continuous, then is a continuum on the Riemann sphere. It is a conjecture of F. Bagemihl and W. Seidel that if is a family of mbpaths in satisfying certain conditions, and if is an analytic set of continua on the Riemann sphere, then there exists a function , analytic in , such that . A restricted form of the conjecture is mentioned in [3, p. 100]. Our principal results show the correctness of the conjecture in the case that is the collection of all continua on the Riemann sphere and is a tress of a certain type. The results are generalized in several directions. In particular, our technique for constructing the analytic function extends immediately to the case in which is any closed set of continua on the sphere. Specific examples of closed sets lead to several corollaries.
 [1]
N.
U. Arakeljan, Uniform and tangential approximations by analytic
functions, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 3
(1968), no. 45, 273–286 (Russian, with Armenian and English
summaries). MR
0274770 (43 #530)
 [2]
F.
Bagemihl and J.
E. McMillan, Uniform approach to cluster sets of arbitrary
functions in a disk, Acta Math. Acad. Sci. Hungar. 17
(1966), 411–418. MR 0203032
(34 #2891)
 [3]
F.
Bagemihl and W.
Seidel, A problem concerning cluster sets of analytic
functions, Math. Z. 62 (1955), 99–110. MR 0072220
(17,249d)
 [4]
F.
Bagemihl and W.
Seidel, Some boundary properties of analytic functions, Math.
Z. 61 (1954), 186–199. MR 0065643
(16,460d)
 [5]
F.
Bagemihl and W.
Seidel, Spiral and other asymptotic paths, and paths of complete
indetermination, of analytic and meromorphic functions, Proc. Nat.
Acad. Sci. U. S. A. 39 (1953), 1251–1258. MR 0059352
(15,515c)
 [6]
James
Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass.,
1966. MR
0193606 (33 #1824)
 [7]
P.
Gauthier and W.
Seidel, Some applications of Arakélian’s approximation
theorems to the theory of cluster sets, Izv. Akad. Nauk Armjan. SSR
Ser. Mat. 6 (1971), no. 6, 458–464 (English,
with Armenian and Russian summaries). MR 0302919
(46 #2062)
 [8]
S. Kierst and E. Szpilrajn, Sur certaines singularités des fonctions analytiques uniformes, Fund. Math. 21 (1933), 276294.
 [9]
K.
Kuratowski, Topology. Vol. I, New edition, revised and
augmented. Translated from the French by J. Jaworowski, Academic Press, New
YorkLondon; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. MR 0217751
(36 #840)
 [10]
, Topology. II, Academic Press, New York, 1968.
 [11]
S. N. Mergelyan, Uniform approximation to functions of a complex variable, Uspekhi Mat. Nauk (N.S.) 7 (1952), 33122; Amer. Math. Soc. Transl. 101 (1954).
 [12]
Alice
Roth, Approximationseigenschaften und Strahlengrenzwerte
meromorpher und ganzer Funktionen, Comment. Math. Helv.
11 (1938), no. 1, 77–125 (German). MR
1509593, http://dx.doi.org/10.1007/BF01199693
 [13]
J.
L. Stebbins, A construction of meromorphic functions with
prescribed asymptotic behavior, Nagoya Math. J. 41
(1971), 75–87. MR 0291468
(45 #559)
 [14]
J.
L. Walsh, Interpolation and approximation by rational functions in
the complex domain, Third edition. American Mathematical Society
Colloquium Publications, Vol. XX, American Mathematical Society,
Providence, R.I., 1960. MR 0218587
(36 #1672a)
 [1]
 N. U. Arakeljan, Uniform and tangential approximation by holomorphic functions, Izv. Akad. Nauk. Armjan SSR Ser. Mat. 3 (1968), 273286. MR 0274770 (43:530)
 [2]
 F. Bagemihl and J. E. McMillan, Uniform approach to cluster sets of arbitrary functions in a disk, Acta Math. Acad. Sci. Hungar. 17 (1966), 411418. MR 0203032 (34:2891)
 [3]
 F. Bagemihl and W. Seidel, A problem concerning the cluster sets of analytic functions, Math. Z. 62 (1955), 99110. MR 0072220 (17:249d)
 [4]
 , Some boundary properties of analytic functions, Math. Z. 61 (1954), 186199. MR 0065643 (16:460d)
 [5]
 , Spiral and other asymptotic paths, and paths of complete indetermination of analytic and meromorphic functions, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 12511258. MR 0059352 (15:515c)
 [6]
 J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 0193606 (33:1824)
 [7]
 P. M. Gauthier and W. Seidel, Some applications of Arakelian's approximation theorems to the theory of cluster sets, Izv. Akad. Nauk Armjan SSR Ser. Mat. 6 (1971), 458464. MR 0302919 (46:2062)
 [8]
 S. Kierst and E. Szpilrajn, Sur certaines singularités des fonctions analytiques uniformes, Fund. Math. 21 (1933), 276294.
 [9]
 K. Kuratowski, Topology. I, Academic Press, New York, 1966. MR 0217751 (36:840)
 [10]
 , Topology. II, Academic Press, New York, 1968.
 [11]
 S. N. Mergelyan, Uniform approximation to functions of a complex variable, Uspekhi Mat. Nauk (N.S.) 7 (1952), 33122; Amer. Math. Soc. Transl. 101 (1954).
 [12]
 A. Roth, Appoximationseigenschaften und strahlengrenzewerte Meromorpher und ganzer Funktionen, Comment. Math. Helv. 11 (1938), 77125. MR 1509593
 [13]
 J. L. Stebbins, A construction of meromorphic functions with prescribed boundary behavior, Nagoya Math. J. 41 (1971), 7587. MR 0291468 (45:559)
 [14]
 J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloq. Publ., vol. 20, Amer. Math. Soc., Providence, R.I., 1960. MR 0218587 (36:1672a)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
30D40,
30E10
Retrieve articles in all journals
with MSC:
30D40,
30E10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947198708764723
PII:
S 00029947(1987)08764723
Article copyright:
© Copyright 1987
American Mathematical Society
