A renewal theorem for random walks in multidimensional time

Authors:
J. Galambos, K.-H. Indlekofer and I. Kátai

Journal:
Trans. Amer. Math. Soc. **300** (1987), 759-769

MSC:
Primary 60K05; Secondary 60F05

DOI:
https://doi.org/10.1090/S0002-9947-1987-0876477-2

MathSciNet review:
876477

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a family of integer valued, independent and identically distributed random variables with positive mean and finite (positive) variance. Let . The asymptotic behavior of the weighted sum , with summation over , is investigated as . In the special case , the number of solutions of the equation in positive integers becomes the renewal function for a random walk in -dimensional time whose terms are distributed as . Under some assumptions on the magnitude of and of , (i) it is shown that is asymptotically distribution free as , (ii) the proper order of magnitude of is determined, and under some further restrictions on , (iii) a simple asymptotic formula is given for . From (i), the known asymptotic formula for with or 3 is deduced under the sole assumption of finite variance. The relaxation of previous moment assumptions requires a new inequality for the sum of the divisor function , which by itself is of interest.

**[1]**R. N. Bhattacharya and R. Ranga Rao,*Normal approximation and asymptotic expansions*, Wiley, New York, 1976. MR**0436272 (55:9219)****[2]**K. L. Chung and H. Pollard,*An extension of renewal theory*, Proc. Amer. Math. Soc.**3**(1952), 303-309. MR**0048734 (14:61d)****[3]**J. L. Doob,*Renewal theory from the point of view of the theory of probability*, Trans. Amer. Math. Soc.**63**(1948), 422-438. MR**0025098 (9:598d)****[4]**P. Embrechts, M. Maejima and E. Omey,*A renewal theorem of Blackwell type*, Ann. Probab.**12**(1984), 561-570. MR**735853 (85d:60160)****[5]**P. Erdös, W. Feller and H. Pollard,*A property of power series with positive coefficients*, Bull. Amer. Math. Soc.**55**(1949), 201-204. MR**0027867 (10:367d)****[6]**J. Galambos and I. Kátai,*A note on random walks in multidimensional time*, Math. Proc. Cambridge Philos. Soc.**99**(1986), 163-170. MR**809511 (87a:60078)****[7]**-,*Some remarks on random walks in multidimensional time*, Proc. 5th Pannonian Sympos. on Math. Statist. (Visegrád, Hungary, 1985), J. Mogyoródi et al., eds., Reidel, Dordrecht, 1986a.**[8]**P. Greenwood, E. Omey and J. L. Teugels,*Harmonic renewal measures*, Z. Wahrsch. Verw. Gebiete**59**(1982), 391-409. MR**721635 (85e:60093)****[9]**G. H. Hardy and E. M. Wright,*An introduction to the theory of numbers*, Oxford, 1960. MR**0067125 (16:673c)****[10]**K.-H. Indlekofer,*A mean-value theorem for multiplicative functions*, Math. Z.**172**(1980), 255-271. MR**581443 (82d:10068)****[11]**T. Kawata,*A theorem of renewal type*, Kodai Math. Sem. Rep.**13**(1961), 185-194. MR**0141175 (25:4586)****[12]**Yu. V. Linnik and A. I. Vinogradov,*An estimate of the sum of the number of divisors in some intervals of an arithmetical progression*, Uspehi Mat. Nauk**12**(76) (1957), 277-280. MR**0094312 (20:831)****[13]**M. Maejima and T. Mori,*Some renewal theorems for random walks in multidimensional time*, Math. Proc. Cambridge Philos. Soc.**95**(1984), 149-154. MR**727089 (85f:60129)****[14]**P. Ney and S. Wainger,*The renewal theorem for a random walk in two-dimensional time*, Studia Math.**46**(1972), 71-85. MR**0322978 (48:1336)****[15]**V. V. Petrov,*Sums of independent random variables*, Springer-Verlag, Heidelberg, 1975. MR**0388499 (52:9335)****[16]**W. L. Smith,*Renewal theory and its ramifications*, J. Roy Statist. Soc. (B)**20**(1958), 243-302. MR**0099090 (20:5534)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
60K05,
60F05

Retrieve articles in all journals with MSC: 60K05, 60F05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0876477-2

Keywords:
Random walk,
multidimensional time,
renewal theorem,
weighted renewal function,
inequality,
asymptotic formula,
divisor function

Article copyright:
© Copyright 1987
American Mathematical Society