Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The structure of $ \sigma$-ideals of compact sets

Authors: A. S. Kechris, A. Louveau and W. H. Woodin
Journal: Trans. Amer. Math. Soc. 301 (1987), 263-288
MSC: Primary 03E15; Secondary 28A05, 42A63
MathSciNet review: 879573
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Motivated by problems in certain areas of analysis, like measure theory and harmonic analysis, where $ \sigma$-ideals of compact sets are encountered very often as notions of small or exceptional sets, we undertake in this paper a descriptive set theoretic study of $ \sigma$-ideals of compact sets in compact metrizable spaces. In the first part we study the complexity of such ideals, showing that the structural condition of being a $ \sigma$-ideal imposes severe definability restrictions. A typical instance is the dichotomy theorem, which states that $ \sigma$-ideals which are analytic or coanalytic must be actually either complete coanalytic or else $ {G_\delta}$. In the second part we discuss (generators or as we call them here) bases for $ \sigma$-ideals and in particular the problem of existence of Borel bases for coanalytic non-Borel $ \sigma$-ideals. We derive here a criterion for the nonexistence of such bases which has several applications. Finally in the third part we develop the connections of the definability properties of $ \sigma$-ideals with other structural properties, like the countable chain condition, etc.

References [Enhancements On Off] (What's this?)

  • [B] N. K. Bary, A treatise on trigonometric series. Vols. I, II, Authorized translation by Margaret F. Mullins. A Pergamon Press Book, The Macmillan Co., New York, 1964. MR 0171116
  • [BM] John P. Burgess and R. Daniel Mauldin, Conditional distributions and orthogonal measures, Ann. Probab. 9 (1981), no. 5, 902–906. MR 628885
  • [CM] D. Cenzer and R. D. Mauldin, Faithful extensions of analytic sets to Borel sets, Houston J. Math. 6 (1980), no. 1, 19–29. MR 575911
  • [Ch] Gustave Choquet, Theory of capacities, Ann. Inst. Fourier, Grenoble 5 (1953–1954), 131–295 (1955). MR 0080760
  • [Chr] Jens Peter Reus Christensen, Necessary and sufficient conditons for the measurability of certain sets of closed subsets, Math. Ann. 200 (1973), 189–193. MR 0334169
  • [D1] Claude Dellacherie, Ensembles analytiques, capacités, mesures de Hausdorff, Lecture Notes in Mathematics, Vol. 295, Springer-Verlag, Berlin-New York, 1972 (French). MR 0492152
  • [D2] Claude Dellacherie, Capacités et processus stochastiques, Springer-Verlag, Berlin-New York, 1972 (French). Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 67. MR 0448504
  • [DFM] C. Dellacherie, D. Feyel, and G. Mokobodzki, Intégrales de capacités fortement sous-additives, Seminar on Probability, XVI, Lecture Notes in Math., vol. 920, Springer, Berlin-New York, 1982, pp. 8–40 (French). MR 658670
  • [D3] C. Dellacherie, Appendice á l'exposé précédent, ibid., pp. 29-40.
  • [DM] Claude Dellacherie and Paul-André Meyer, Probabilités et potentiel, Hermann, Paris, 1975 (French). Chapitres I à IV; Édition entièrement refondue; Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV; Actualités Scientifiques et Industrielles, No. 1372. MR 0488194
  • [Hi] Gérard Hillard, Une généralisation du théorème de Saint-Raymond sur les boréliens à coupes \cal𝐾_{𝜎}, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 16, A749–A751 (French, with English summary). MR 535803
  • [Hu] W. Hurewicz, Relativ Perfecte Teile von Punktmengen und Mengen (A), Fund. Math. (12), 1928.
  • [KS] Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, Actualités Sci. Indust., No. 1301, Hermann, Paris, 1963 (French). MR 0160065
  • [K1] R. Kaufman, Fourier transforms and descriptive set theory, Mathematika 31 (1984), no. 2, 336–339 (1985). MR 804207, 10.1112/S0025579300012547
  • [K2] -, private communication, January 1985.
  • [KLSS] A. S. Kechris, A. Louveau, J. Saint-Raymond and J. Stern, Inaccessible cardinals and characterizations of Polish spaces (in preparation).
  • [KS] Jean-Pierre Kahane and Raphaël Salem, Ensembles parfaits et séries trigonométriques, Actualités Sci. Indust., No. 1301, Hermann, Paris, 1963 (French). MR 0160065
  • [Ku] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. MR 0217751
  • [L1] Alain Louveau, Ensembles analytiques et boréliens dans les espaces produits, Astérisque, vol. 78, Société Mathématique de France, Paris, 1980 (French). With an English summary. MR 606933
  • [L2] Alain Louveau, Recursivity and capacity theory, Recursion theory (Ithaca, N.Y., 1982) Proc. Sympos. Pure Math., vol. 42, Amer. Math. Soc., Providence, RI, 1985, pp. 285–301. MR 791064, 10.1090/pspum/042/791064
  • [MK] Donald A. Martin, Infinite games, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 269–273. MR 562614
  • [StR1] Jean Saint-Raymond, Caractérisation d’espaces polonais. D’après des travaux récents de J. P. R. Christensen et D. Preiss, Séminaire Choquet, 11e–12e années (1971–1973), Initiation à l’analyse, Exp. No. 5, Secrétariat Mathématique, Paris, 1973, pp. 10 (French). MR 0473133
  • [StR2] Jean Saint-Raymond, La structure borélienne d’Effros est-elle standard?, Fund. Math. 100 (1978), no. 3, 201–210 (French). MR 509546
  • [S] R. M. Solovay, private communication, December 1983.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03E15, 28A05, 42A63

Retrieve articles in all journals with MSC: 03E15, 28A05, 42A63

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society