POSITIVE SOLUTIONS OF SYSTEMS OF SEMILINEAR ELLIPTIC EQUATIONS:
THE PENDULUM METHOD

JOSEPH GLOVER

ABSTRACT. Conditions are formulated which guarantee the existence of positive solutions for systems of the form

\[-\Delta u_1 + f_1(u_1, \ldots, u_n) = \mu_1,\]
\[-\Delta u_2 + f_2(u_1, \ldots, u_n) = \mu_2,\]
\[\vdots \quad \vdots \quad \vdots \]
\[-\Delta u_n + f_n(u_1, \ldots, u_n) = \mu_n,\]

where \(\Delta\) is the Laplacian (with Dirichlet boundary conditions) on an open domain in \(\mathbb{R}^d\), and where each \(\mu_i\) is a positive measure. The main tools used are probabilistic potential theory, Markov processes, and an iterative scheme which is a generalization of the one used for quasimonotone systems. Quasimonotonicity is not assumed and new results are obtained even for the case where \(\partial f_k/\partial x_j > 0\) for every \(k\) and \(j\).

0. Introduction. In this article, we introduce conditions which are sufficient to guarantee existence of a solution for a system of semilinear equations of the form

\[-\Delta u_1 + f_1(u_1, \ldots, u_n) = \mu_1,\]
\[-\Delta u_2 + f_2(u_1, \ldots, u_n) = \mu_2,\]
\[\vdots \quad \vdots \quad \vdots \]
\[-\Delta u_n + f_n(u_1, \ldots, u_n) = \mu_n,\]

on an open (bounded or unbounded) domain \(E\) in \(\mathbb{R}^d\), with Dirichlet boundary conditions. We assume each measure \(\mu_i\) is positive, and we show that the solution is positive; i.e. \(u_i \geq 0\) for every \(i\). In fact, we give a constructive procedure for solving (0.1) with general elliptic operators in place of the Laplacian, and our methods even allow us to replace the Laplacian with certain integrodifferential operators. See §4 for other extensions. In (0.1), the \((\mu_k)\) are assumed to be positive measures, and each \(f_k : \mathbb{R}^n \rightarrow \mathbb{R}\) is continuous. The functions \(f_k\) need not satisfy any special conditions such as \(\partial f_k/\partial x_j > 0\), but our methods yield new results even in that case. Previous approaches to solving (0.1) in a constructive way seem to have relied mainly on assuming that (0.1) is a quasimonotone system and on using the method of sub- and supersolutions. For discussions of this approach, see [10 and 11]. Since we do not assume the system is quasimonotone, such methods do not apply, and even if the system is assumed to be quasimonotone, it is not clear how to obtain
upper and lower solutions in general. We introduce an iterative scheme in which the iterates do not increase or decrease monotonically, but instead oscillate. That is, we produce a sequence \((u_k)\) so that \(u_2 \leq u_4 \leq \cdots \leq u_{2k} \leq u_{2k+1} \leq \cdots \leq u_3 \leq u_1\). One might call this a pendulum method, since the iterates swing back and forth over the solution. Much more is known about solving one equation of the form \(-\Delta u + f(u) = \mu\) than is known about solving (0.1). In his survey article [8], Lions discusses the single equation \(-\Delta u + f(u) = \mu\), and he points out that it is important for applications to extend the results for the single equation to systems. See also [1, 4, and 7] for the case of one equation.

For general elliptic operators, positive measures, and arbitrary functions \(f_k\), our hypotheses and results are a bit complicated to state, and we refer the reader to §§1, 2, and 3. (In particular, Theorems (2.9) and (3.1) contain the main results.) In this introduction, we content ourselves with describing the hypotheses, methods, and results in the case where we keep the Laplacian with Dirichlet boundary conditions on a connected domain \(E\) in (0.1), \(f_k(0, \ldots, 0) = 0\), and where

\[
\mu_k(dx) = g_k(x)dx \quad \text{with } g_k > 0 \text{ on } E,
\]

and for every \(k\) and \(j\), there is a constant \(\rho_{kj} > 0\) so that

\[
\partial f_k/\partial x_j(u_1, u_2, \ldots, u_n) \geq \rho_{kj} \quad \text{for } u_1 \geq 0, \ldots, u_n \geq 0.
\]

We emphasize that assumptions (0.2) and (0.3) are for the purposes of discussion in this section only: in §§2 and 3, we treat a much more general situation. Hypothesis (0.3) is a type of quasimonotonicity assumption. But even in this special case, one would need upper and lower solutions in order to apply the monotone iteration schemes of quasimonotone systems. It is not at all clear how to obtain upper and lower solutions, in general, and we completely avoid this problem. With hypotheses (0.2) and (0.3) in force, we make two crucial assumptions. Here is the first one. Let \(V = (-\Delta)^{-1}\) on \(E\), and let \(M\) be Lebesgue measure on \(E\). Assume

\[
\begin{align*}
(i) & \quad V g_k < \infty \text{ a.e. } (M) \text{ for every } k. \\
(ii) & \quad \text{For some } k, M(V g_k > V f_k(V g_1, \ldots, V g_n)) > 0.
\end{align*}
\]

Part (i) seems quite a reasonable assumption. From the potential theory point of view, part (ii) is interesting. Part (ii) is equivalent to saying that the measure \(g_k dM\) is not a balayage of the measure \(f_k(V g_1, \ldots, V g_n) dM\). This is quite often verifiable. For example, when we pass to discussing general measures \(\mu\) in §2, the analogue of this requirement will be that “\(\mu\) is not a balayage of the measure \(G(V \mu) dM\)” (see (2.4)). It is interesting to note that this is automatically guaranteed if the dimension of the space \(d\) is greater than or equal to 2, and if the measure \(\mu\) charges a point. Condition (ii) also implies \(M(V f_k(V g_1, \ldots, V g_n) < \infty) > 0\), and it is well known that we then have \(V f_k(V g_1, \ldots, V g_n) < \infty \text{ a.e. } (M)\).

So if this first crucial assumption (0.4) holds, do the following. Set

\[
J_k(u_1, u_2, \ldots, u_n) = f_k(u_1, u_2, \ldots, u_n) \quad \text{if } u_1 \geq 0, \ldots, u_n \geq 0,
\]

\[
= 0 \quad \text{otherwise}.
\]

Set \(u^1_k = V[g_k]\), and define inductively

\[
u^{j+1}_k = V[g_k - J_k(u^j_1, \ldots, u^j_n)].
\]
Then it is not difficult to see that \(u^2_k \leq u^4_k \leq \cdots \leq u^{2j}_k \leq u^{2j+1}_k \leq \cdots \leq u^3_k \leq u^1_k \), so \(u^{2j}_k \) increases to a function \(a_k \) and \(u^{2j+1}_k \) decreases to a function \(b_k \). It is easy to show that \(a_k = V[g_k - J_k(a_1, \ldots, a_n)] \) and \(b_k = V[g_k - J_k(b_1, \ldots, b_n)] \). In addition, for each \(k \), either \(a_k < b_k \) on all of \(E \), or \(a_k = b_k \) on all of \(E \). It is easy to show that \(b_k \geq 0 \). What is a bit more delicate is the fact that \(b_k > 0 \) on \(E \). To prove this, we use \(g_k > 0 \) and Brownian motion (or, in general, the Markov process associated with the elliptic or integrodifferential operator). If \(a_k = b_k \) for every \(k \), then \(b_k = V[g_k - J_k(b_1, \ldots, b_n)] \). Since \(b_k \geq 0 \), we may rewrite this as \(b_k = V[g_k - f_k(b_1, \ldots, b_n)] \), and we are done (take the Laplacian of both sides—in the sense of distributions).

If \(a_k < b_k \) for some \(k \), we must restart the iteration. Now we need our second crucial hypothesis. Assume for each \(k \) with \(a_k < b_k \):

There is a nonnegative function \(F_k \) on \(E \) and numbers \(\delta_k \) and \(\pi_k \) so that

\[
\begin{align*}
(i) \quad & \{F_k > 0\} \text{ is contained in a compact set } K_k \text{ which is contained in } E, \\
(ii) \quad & F_k \leq J_k(b_1, b_2, \ldots, b_{k-1}, b_k, b_{k+1}, \ldots, b_n) - J_k(a_1, \ldots, a_n), \\
(iii) \quad & F_k \leq \rho^2_{kk} VV(F_k)_{\{a_k > V F_k\}}, \\
(iv) \quad & M(F_k > 0) > 0.
\end{align*}
\]

We show in §2 that the collection of all functions \(F_k \) satisfying (i), (ii), and (iv) is nonempty: it contains lots of functions. One need only check whether or not one of them also satisfies (iii). Part (iii) should be thought of as a geometric condition: the larger the domain is, the more likely it is that (iii) will be satisfied. (For example, it often suffices to use an eigenfunction of \(-\Delta \) for \(F_k \). Let \(\delta_k > 0 \) be small and \(\pi_k > 0 \) be large. In “nice” situations, we expect \(a_k \) and \(b_k \) to be continuous functions, so \(G_k = \{a_k > \delta_k, b_k < \pi_k\} \) will be open. Choose an open set \(H \) so that the closure of \(H \) is contained in \(G_k \), and let \(\phi \) be the first eigenfunction of \(-\Delta \) on \(H \) (with Dirichlet boundary conditions) and eigenvalue \(\lambda > 0 \). Normalize \(\phi \) so that \(\sup\{\phi(x); x \in H\} = 1 \). Let \(W \) be the inverse of \(-\Delta \) on \(H \)—so \(W \leq \lambda \). Assume \(V \phi \) is bounded by a constant \(m \), and set \(F_k = c \phi \) for some constant \(c \) to be determined below. Then \(\rho^2_{kk} VV(c \phi)_{\{a_k > V \phi\}} = \rho^2_{kk} VV(c \phi) \) provided we choose \(c \) so small that \(\delta_k/c > m \). But \(\rho^2_{kk} VV(c \phi) \geq \rho^2_{kk} c \phi / \lambda^2 \). This is larger than \(c \phi \) if \(\lambda \) is small—that is, if \(G \) and \(H \) are large. Thus (i), (iii), and (iv) are satisfied. Condition (ii) can be achieved by choosing \(c \) small.) Hypothesis (0.5) is a simplified version of hypothesis (2.8).

If (0.5) holds, we can restart the iteration by setting \(w^1_k = b_k - V F_k \), and \(w^{2j+1}_k = V[g_k - J_k(w^1_k, \ldots, w^j_k)] \) to obtain \(a_k \leq w^2_k \leq w^4_k \leq \cdots \leq w^3_k \leq w^1_k \leq b_k \). So \(w^{2j}_k \) increases to \(a_k \geq a_k \) and \(w^{2j+1}_k \) decreases to \(b_k \leq b_k \). Clearly it may happen again that we obtain \(a_k < b_k \) for some \(k \). At this point, the reader will realize that we need to apply a transfinite induction argument to show that we must restart the procedure at most countably many times. We show in the transfinite induction argument that each time we restart, we can use the functions \(c F_1, c F_2, \ldots, c F_n \), where \(c \) is a suitably small positive constant. To summarize, if we assume (0.2), (0.3), (0.4), and (0.5), then there are nonnegative functions \(u_1, u_2, \ldots, u_n \) solving (0.1).
EXAMPLE. Let us look at a concrete example in \mathbb{R}^1 to show that the hypotheses can be easily verified in some situations. Let $E = (0, S) \subset \mathbb{R}^1$. Fix positive numbers $p, q, r,$ and s so that $p+q \geq 1$ and $r+s \geq 1$, and consider the system (with Dirichlet boundary conditions):

$$-u'' + c((u + v)/2 + u^p v^q) = 1, \quad -v'' + c((u + v)/2 + u^r v^s) = 1.$$

As discussed above, we set $u_1 = v_1 = V1$, and

$$u_2 = V[1 - c(V1 + (V1)^{p+q})], \quad v_2 = V[1 - c(V1 + (V1)^{r+s})].$$

What very simple conditions on S and c can we impose to guarantee that the iterative method outlined above yields a solution? First, it would be ideal if $u_2 \geq 0$ and $v_2 \geq 0$ everywhere on E. One way to guarantee this is to require $V1 \leq 1, 1 \geq 2cV1 \geq c(V1 + (V1)^{p+q})$, and $1 \geq 2cV1 \geq c(V1 + (V1)^{r+s})$. Since $V1(x) = x(S-x)/2$, $V1 \leq 1$ provided $S \leq 2^{3/2}$. We also have $1 \geq 2cV1$ if $c \leq 4/S^2$. These conditions suffice to guarantee that $a_1 > 0$ and $a_2 > 0$. To restart the iteration (if necessary), we will take F_k to be a multiple of the first eigenfunction of $-\Delta$ (with Dirichlet boundary conditions) on $(e, S - e)$ for some small $e > 0$. Note that we may take $\rho_{kk} = c/2$. In order to satisfy (0.5iii), we need $c/2$ to be larger then the first eigenvalue of $-\Delta$ on $(0, S)$ (and this is π/S). The two conditions needed for c are: $4/S^2 \geq c > 2\pi/S$. Thus we require $S < 4/2\pi$. If these conditions are satisfied, the iterative procedure leads to a solution of the given system. Of course, these conditions can be relaxed considerably (by doing a considerably more detailed analysis).

In order to treat (0.1) with general elliptic operators and measures, we depend heavily on using potential theory as it is formulated in the probabilistic potential theory literature. We recall most of what the reader needs to know in the text; Chapter VI of [2] is a good reference. In §1, we introduce the potential theory framework. In particular, this is necessary to drop hypothesis (0.3). In §2, we discuss analogues in the general situation of the hypotheses we introduced in this section, and we show how to solve (0.1). The main result is (2.9). The hypotheses look a bit forbidding when first encountered, but they are actually quite natural, as we have tried to indicate, and we discuss them further in §3. We also give another version of (2.9) in (3.1), where we drop a hypothesis (by replacing it with several more!). In §4, we briefly indicate some extensions. The appendix is devoted to a technical result necessary to show $b_k > 0$. All Markov processes are confined to the appendix.

ACKNOWLEDGMENT. I would like to thank P. J. McKenna and M. Rao for several stimulating conversations on the subjects contained in this article.

NOTATION. In general, notation is standard and can be found, for example, in Chapter VI of [2]. We introduce most of it as needed. If \mathcal{E} is any σ-algebra, then we use the same letter \mathcal{E} to denote the collection of all \mathcal{E}-measurable functions which are real-valued. If D is any collection of functions, then bD (resp. pD) is the collection of bounded (resp. positive) functions in D. Thus $b \mathcal{E}$ is the collection of positive and bounded \mathcal{E}-measurable real-valued functions. Let (A, \mathcal{A}, μ) be a measure space, let (B, \mathcal{B}) be a measurable space, and let $\Phi : A \to B$ be measurable. We denote the image measure of μ under Φ by $\Phi(\mu)$; that is, $\Phi(\mu)(G) = \mu(\Phi^{-1}(G))$ for every $G \in \mathcal{B}$. A measure putting all of its mass at the point x will be denoted by δ_x.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
1. The potential theory framework. Let E be an open domain in \mathbb{R}^d, and let \mathcal{E} be its Borel field. For each k with $1 \leq k \leq n$, let P_t^k be a sub-Markov semigroup on (E, \mathcal{E}), and let U_k^q be its resolvent. (That is, for each $x \in E, P_t^k(x, \cdot)$ is a sub-probability measure on (E, \mathcal{E}). If we define $P_t^k f(x) = \int_E f(y) P_t^k(x, dy)$, then $P_s^k P_t^k f(x) = P_{s+t}^k f(x)$. The resolvent is $U_k^q f(x) = \int_0^\infty e^{-qt} P_t^k f(x) dt$.)

NOTATION. $C(E)$ is the collection of all continuous functions on E. $C_c(E)$ (resp. $C_c^2(E)$) is the collection of all continuous functions on E with compact support in E (resp. and having two continuous derivatives). $C_0(E)$ is the collection of functions in $C(E)$ vanishing at the boundary of E. We let $b\mathcal{E}_c$ be the collection of bounded \mathcal{E}-measurable functions vanishing off a compact set contained in E.

We assume:

(1.0) For each $q > 0, U_k^q : b\mathcal{E}_c \rightarrow C_0(E)$ and $\lim_{q \rightarrow \infty} q U_k^q f = f$ whenever $f \in C_c(E)$.

(1.1) (reference measure) There is a Radon measure m_k on (E, \mathcal{E}) so that $U_k^q(x, \cdot) \ll m_k$ for each $x \in E$.

(duality) There is another sub-Markov semigroup R_t^k on (E, \mathcal{E}) with resolvent W_t^k so that

\[
(1.2) \quad \int_E (R_t^k f) g \, dm_k = \int_E f (P_t^k g) \, dm_k
\]

for every f and g in $p\mathcal{E}$. For each $q > 0, W_t^k : b\mathcal{E}_c \rightarrow C_0(E)$ and $\lim_{q \rightarrow \infty} q W_t^k f = f$ whenever $f \in C_c(E)$.

(infinitesimal generators) There are linear operators L_k and L_k^* with domains $D_k \supset C_c^2(E)$ and $D_k^* \supset C_c^2(E)$ so that for every f in $C_c^2(E), (f - P_t^k f)/t$ converges boundedly to $-L_k f$ as t tends to zero, and $(f - R_t^k f)/t$ converges boundedly to $-L_k^* f$ as t tends to zero. In addition, $L_k : C_c^2(E) \rightarrow b\mathcal{E}_c$ and $L_k^* : C_c^2(E) \rightarrow b\mathcal{E}_c$.

These conditions are satisfied by a huge class of strong Feller semigroups, the best known of which has $L_k = \Delta/2$ with Dirichlet boundary conditions. In this case, P_t^k is the semigroup of a Brownian motion “killed” when it reaches the boundary of E. This example also satisfies the additional hypothesis (1.5) below if E is connected. There is also a large class of semigroups satisfying these conditions for which L_k and L_k^* are nonlocal integrodifferential operators.

DEFINITION. A function $f \in p\mathcal{E}$ is said to be excessive for a resolvent (V^α) on (E, \mathcal{E}) if $\alpha V^\alpha f \leq f$ for every $\alpha > 0$ and if $\lim_{\alpha \rightarrow \infty} \alpha V^\alpha f = f$.

As a consequence of the numbered assumptions above, there is a function $u_k(x, y) \in p\mathcal{E} \times \mathcal{E}$ so that:

\[
(1.4) \quad (i) \quad x \rightarrow u_k(x, y) \text{ is excessive for } U_k^q;
(ii) \quad y \rightarrow u_k(x, y) \text{ is excessive for } W_k^q;
(iii) \quad U_k^q f(x) = \int_E u_k(x, y) f(y) m_k(dy) \text{ for every } f \in p\mathcal{E};
(iv) \quad W_k^q f(y) = \int_E u_k(x, y) f(x) m_k(dx) \text{ for every } f \in p\mathcal{E};
(v) \quad \text{for each } y \in E, x \rightarrow u_k(x, y) \text{ is lower semicontinuous;}
(vi) \quad \text{for each } x \in E, y \rightarrow u_k(x, y) \text{ is lower semicontinuous.}
\]
For the construction of this function, see Chapter VI of [2]. This is the precise version of the "Green function" we need to define potentials of measures. We assume

(1.5) \[u_k(x, y) > 0 \quad \text{for every } x, y \in E. \]

DEFINITION. If \(\mu \) is a positive measure on \((E, \mathcal{E})\) then the potential of \(\mu \) is defined to be \(U_k\mu(x) = \int_E u_k(x, y)\mu(dy) \). If \(\rho = \mu - \nu \) is the difference of the two positive measures \(\mu \) and \(\nu \), and if \(U_k(\mu + \nu) < \infty \) a.e. \((m_k)\), then we set

\[
U_k\rho(x) = U_k\mu(x) - U_k\nu(x) \quad \text{on } \{U_k(\mu + \nu) < \infty\}
\]
\[
= \infty \quad \text{on } \{U_k(\mu + \nu) = \infty\}.
\]

The following properties are implied by (1.4vi) and (1.5):

(i) If \(K \) is compact in \(E \), then \(\inf\{u_k(x, y) : x \in K\} > 0 \), and \(\inf\{u_k(x, y) : y \in K\} > 0 \).

(1.6) (ii) If \(\rho \) is a signed measure on \((E, \mathcal{E})\) with \(U_k|\rho| < \infty \) a.e. \((m_k)\), then \(U_k\rho \) is locally integrable. That is, \(\int_K U_k\rho(x)m_k(dx) < \infty \) whenever \(K \) is compact in \(E \).

See [2].

Our purpose in this section is to develop a bit of potential theory necessary to formulate conditions sufficient to insure the existence of solutions for the following system of semilinear equations:

\[-L_1u_1 + f_1(u_1, \ldots, u_n) = \mu_1,\]
\[
\vdots \quad \vdots \quad \vdots \]
\[-L_nu_n + f_n(u_1, \ldots, u_n) = \mu_n.\]

(1.7) Here, each \(\mu_k \) is a positive measure on \((E, \mathcal{E})\) and each \(f_k : \mathbb{R}^n \to \mathbb{R} \). Our analysis of the problem depends on adopting the following perspective, which is useful in potential theory.

Let \(E_1, E_2, \ldots, E_n \) be \(n \) distinct copies of \(E \), and let \(F = \bigcup_{k=1}^n E_k \). In general, we will denote a point of \(E \) by \(x \) (without a subscript) and a point in \(E_k \) by \(x_k \) (the subscript indicating in which copy of \(E \) the point lies). Let \(e_k : E \to E_k \) be the injection \(e_k x = x_k \). Let \(d_E \) be a metric on \(E \) compatible with the topology of \(E \). Define a metric \(d_F \) on \(F \) by setting

\[
d_F(x_k, y_j) = d_E(x, y) \quad \text{if } k = j,
\]
\[
= 1 \quad \text{otherwise},
\]

whenever \(x_k = e_k x \) and \(y_j = e_j y \). This metric induces a topology on \(F \) which obviously extends the topology on \(E \). Its Borel field \(\mathcal{F} \) is characterized by the fact that its trace on \(E_k \) is \(\mathcal{E}_k \), a copy of \(\mathcal{E} \).

Define

(1.8) \[\mu = \sum_{k=1}^n e_k(\mu_k), \]

and define a new sub-Markov semigroup \(P_t \) on \(F \) by setting

(1.9) \[P_t f(x_k) = \int_{E_k} f(y) e_k(P^k_t(x, dy)) \]
whenever \(x_k = e_k x \) and \(f \in b \mathcal{F} \). It is easy to check that \(P_t \) is a semigroup on \(F \), and it has infinitesimal generator

\[
L = \sum_{k=1}^{n} L_k 1_{E_k},
\]

and resolvent

\[
U^q = \int_0^\infty e^{-qt} P_t \, dt.
\]

Note that \(U^q(x_k, \cdot) = e_k(U_k^q(x, \cdot)) \) whenever \(x_k = e_k x \). If we define the measure \(M \) on \((F, \mathcal{F})\) by setting

\[
M = \sum_{k=1}^{n} e_k(m_k),
\]

then \(U^q(z, \cdot) \ll M \) for every \(z \) in \(F \). The potential density \(u(\cdot, \cdot) \) for \(U^0 \) is given by

\[
u(x_k, y_j) = \mu_k(x, y) \quad \text{if} \quad k = j,
\]

\[
u = 0 \quad \text{otherwise}
\]

for \(x_k = e_k x \) and \(y_j = e_j y \).

We find this perspective handy because, in solving (1.7), we need to analyze not the inverse of the linear system \((-L_1, -L_2, \ldots, -L_n)\), but instead the inverse of the perturbed linear system

\[
-L_1 u_1 - \alpha_{11} u_1 - \alpha_{12} u_2 - \cdots - \alpha_{1n} u_n,
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
-L_n u_n - \alpha_{n1} u_1 - \alpha_{n2} u_2 - \cdots - \alpha_{nn} u_n.
\]

(The \(\alpha_{kj} \) are positive functions on \(E \) to be chosen in \(\S \S 2 \) and 3. In general, they may be unbounded and have infinities.) We may obtain the inverse of this system by perturbing the resolvent \(U^q \) as follows. Define a kernel \(B(z, dy) \) from \((F, \mathcal{F})\) to \((F, \mathcal{F})\): for \(1 \leq k \leq n \), set

\[
B(x_k, \cdot) = \sum_{j=1}^{n} \alpha_{kj}(x)e_{x_j}(\cdot),
\]

where \(x_j = e_j x \). For each \(q \geq 0 \), define a new kernel on \((F, \mathcal{F})\) by setting

\[
V^q = \sum_{k=0}^{\infty} (U^q B)^k U^q.
\]

The infinite sum makes sense since each term is positive. It is easy to check that \(V^q \) satisfies the resolvent equation: if \(p \geq 0 \) and \(q \geq p \), then \(V^p = V^q + (q - p)V^p V^q \). If the \(\alpha_{kj} \) are too large, then \(V^0(z, \cdot) \) may not be \(\sigma \)-finite for some \(z \) in \(F \). We always assume:

\[
\text{(1.13) There is a strictly positive function } \Psi \in \mathcal{F} \text{ so that } V^0 \Psi(z) < \infty \text{ for every } z \in F.
\]

If \(f \in p \mathcal{F} \), an application of the resolvent equation shows that \(Vf \) is excessive. Since \(V^q \) is a resolvent and we are assuming (1.13), we have the following maximum principle.
(1.14) PROPOSITION [9, IX, T68]. Let \(f \in p \mathcal{F} \). If \(h \) is an excessive function for \((V^q) \) and if \(Vf \leq h \) on \(\{ f > 0 \} \), then \(Vf \leq h \) on \(F \).

(1.15) NOTATION. \(V(x, \cdot) \equiv V^0(x, \cdot) \).

This perturbation \(V^q \) of \(U^q \) is well understood in the classical case when the \(a_{kj} \) and \(U^q \) are well behaved.

(1.16) PROPOSITION [3]. Assume \(F \) is locally compact with a countable base and that \(P_t \) is a Feller semigroup with strong infinitesimal generator \((L, D(L)) \) on \(C_0(F) \). If \(B \) is a continuous operator on \(C_0(F) \), then \(V^q \) is the resolvent of a strong Feller semigroup on \(C_0(F) \) with infinitesimal generator \((L + B, D(L)) \).

We will work without such strong hypotheses. In particular, \(P_t \) may not be Feller and \(B \) is usually not continuous.

(1.17) DEFINITION. Set

\[
(1.18) v(z, y) = \sum_{k=0}^{\infty} [(UB)^k u(\cdot, y)](z) = \sum_{k=0}^{\infty} \int_F u(w, y)(UB)^k(z, dw).
\]

If \(\rho \) is a positive or signed measure on \(F \), then the potential of \(\rho, V\rho \), is defined with the density \(v \) just as \(U\mu \) was defined with the density \(u \). In §2, hypothesis (2.1c) will imply \(\alpha_{kj} > 0 \), and this in turn implies \(v(z, y) > 0 \).

(1.19) LEMMA. (i) If \(\rho \) is a signed measure on \((F, \mathcal{F}) \) with \(V|\rho| < \infty \) a.e. \((M) \), then \(\int_K V\rho \, dM < \infty \) whenever \(K \subset F \) is compact. That is, \(V\rho \) is locally integrable.

(ii) Assume (2.1c). If \(K \subset F \) is compact, then \(\inf\{v(z, y) : y \in K\} > 0 \) for every \(z \) in \(F \) and \(\inf\{v(z, y) : z \in K\} > 0 \) for every \(y \) in \(F \).

PROOF. (i) \(V|\rho| = U(|\rho| + \sum_{k=0}^{\infty} B(UB)^kU|\rho|) \). Since the right-hand side is the \(U \)-potential of a positive measure, it must be locally integrable by (1.6ii) and the definition of \(U \). Since \(V|\rho| \) is locally integrable, \(V\rho \) is locally integrable.

(ii) This follows from (1.6i) and (2.1c) since \(v(x, y) \geq u(x, y) \). Q.E.D.

(1.20) PROPOSITION. Let \(\rho \) be a signed measure on \((F, \mathcal{F}) \) so that \(V|\rho| < \infty \) a.e. \((M) \). Then \((L + B)V\rho = -\rho \) in the sense that

\[
(1.21) \int_F (L^*f)V\rho \, dM + \int_F f(BV\rho) \, dM = -\rho(f)
\]

whenever \(f \in C^2_\infty(F) \), and where

\[
L^* = \sum_{k=1}^{n} L_{E_k}^* 1_{E_k}.
\]

PROOF. Assume first that \(\rho \) is a positive measure on \((F, \mathcal{F}) \) and let \(f \in pC^2_\infty(E_k) \). By (1.19), \(V\rho \) is locally integrable. Since the support of \(L_{E_k}^* \) is compact in \(E_k \) by hypothesis (1.3), the following integrals are well defined and we have

\[
(1.22) \int_{E_k} (L_{E_k}^*f)V\rho \, dM = \int_{E_k} (L_{E_k}^*f) \sum_{j=0}^{\infty} (UB)^j U\rho \, dM.
\]
Since the integrands are absolutely integrable, Fubini’s theorem applies, and we may rewrite (1.22) as

\[
\int_{E_k} (L_k^* f) U \rho \, dM + \sum_{j=1}^{\infty} \int_{E_k} (L_k^* f)(UB)^j U \rho \, dM.
\]

To analyze (1.23), we need the following result.

(1.24) **Lemma.** If \(\gamma \) is a positive measure on \((E, \mathcal{E})\) with \(U_k \gamma < \infty \) a.e. \((m_k)\), then

\[
\int_E (L_k^* f) U_k \gamma \, dm_k = -\gamma(f)
\]

whenever \(f \in C^2_c(E) \).

Proof. Recall that \(W_k L_k^* f = W_k \lim_{t \to 0} (R_k^* f - f)/t \) = \(\lim_{t \to 0} W_k(R_k^* f - f)/t \) since the convergence is bounded by hypothesis (1.3). But this last term may be rewritten as

\[
-\lim_{t \to 0} t^{-1} \int_0^t R_k^* f \, ds = -f.
\]

Since

\[
\int_E |L_k^* f| U_k \gamma \, dm_k < \infty,
\]

Fubini’s theorem applies to the first term in (1.25) and yields

\[
\int_E W_k L_k^* f \, d\gamma = -\gamma(f). \quad \text{Q.E.D.}
\]

Thus the first term in (1.23) may be rewritten as \(-\rho(f)\), while the infinite sum in (1.23) may be rewritten as

\[
\sum_{j=1}^{\infty} \int_{E_k} (L_k^* f)(UB)^j U \rho \, dM = -\sum_{j=1}^{\infty} \int_{E_k} f(UB)^j U \rho \, dM.
\]

Since \(f \geq 0 \) and \((UB)^j U \rho \geq 0\), we may rewrite this as

\[
-\int_{E_k} f \sum_{j=1}^{\infty} (UB)^j U \rho \, dM = -\int_{E_k} f(BV \rho) \, dM.
\]

This proves (1.21) for \(\rho \geq 0 \) and \(f \in pC^2_c(E_k) \). The general case follows by linearity. Q.E.D.

Now how can this potential theory aid us in solving (1.7)? Formally, we may rewrite (1.7) as

\[
-L_1 u_1 - \alpha_{11} u_1 - \cdots - \alpha_{1n} u_n = \mu_1 - G_1(x, u_1, \ldots, u_n),
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
-L_n u_n - \alpha_{n1} u_1 - \cdots - \alpha_{nn} u_n = \mu_n - G_n(x, u_1, \ldots, u_n),
\]

where \(G_k(x, u_1, \ldots, u_n) = \alpha_{k1}(x) u_1 + \cdots + \alpha_{kn}(x) u_n + f_k(u_1, \ldots, u_n) \). Define a function \(H : F \times \mathbb{R}^n \to \mathbb{R} \) by setting \(H(x_k, u) = G_k(x, u_1, \ldots, u_n) \) for \(x_k = e_k x \). If
$u: F \to \mathbb{R}$, let $G(x_k, u) = H(x_k, u(x_1), u(x_2), \ldots, u(x_n))$ where $x_j = \epsilon_j x$. If we try to solve (1.26) by inverting, we find we need to solve the following equation for u:

$$(1.27) \quad u = V[\mu - G(\cdot, u(\cdot))],$$

where μ and V are defined above. Once we find such a function u, Proposition (1.20) shows that $-(L + B)u = \mu - G(\cdot, u(\cdot))$. Thus, if we set $u_1(x) = u(\epsilon_1 x), u_2(x) = u(\epsilon_2 x), \ldots, u_n(x) = u(\epsilon_n x)$, we have that the functions u_1, u_2, \ldots, u_n solve (1.26), and so they solve (1.7).

2. The main argument. In this section, we develop hypotheses which allow us to solve the equation $u = V[\mu - G(\cdot, u(\cdot))]$. We assume the notation and hypotheses discussed in §1. (In particular, we assume (1.0) through (1.3), (1.5), and (1.13).) In addition, we assume the following conditions throughout this section.

(a) μ is a positive measure, $\mu(F) > 0$ and $V\mu < \infty$ a.e. (M).
(b) $G(x, u)$ is continuous in u, and $G(x, 0) = 0$.
(c) The functions α_{kj} have been chosen strictly positive so that $G(x, u) < G(x, v)$ whenever $0 \leq u(\cdot) < v(\cdot) \leq V\mu(\cdot)$.

Recall (2.1c) implies $v(z, y) > 0$ for every z and y in F.

For most of this section, we work with a "cutoff" of G, $J(\mu)(z)$, defined as follows: for x in E and $x_k = \epsilon_k x$,

$$(2.2) \quad J(u)(x_k) = G(x_k, u)1_{\{u(\epsilon_1 x) \geq 0, \ldots, u(\epsilon_n x) \geq 0\}}.$$

(2.3) PROPOSITION. Assume (2.1) and the following condition:

$$(2.4) \quad M(V\mu > VG(V\mu)) > 0.$$

Then there are two functions u_1 and v_1 on F so that $u_1 \leq v_1 \leq V\mu$, $u_1 = V[\mu - J(v_1)]$, and $v_1 = V[\mu - J(u_1)]$.

NOTATION. If $w \in \mathcal{F}$, let $H(w) = \mu - J(w)$. We also adopt the convention $\infty - \infty = \infty$.

REMARK. By (2.4), $M(VG(V\mu) < \infty) > 0$. This implies $VG(V\mu) < \infty$ a.e. (M). For if $M(VG(V\mu) = \infty) > 0$, then we would have $\alpha V^\alpha(VG(V\mu)) = \infty$ since $v^\alpha(z, \cdot)$ is bounded away from zero on compacts.

PROOF. Set $w_1 = V\mu$, and define $w_2 = VH(w_1)$. Note that w_2 is well defined a.e. (M) since $V \mu < \infty$ a.e. (M) and $J \geq 0$. By (2.4), $M(w_2 > 0) > 0$. Since $J \geq 0$, $w_2 \leq w_1$. Now set $w_3 = VH(w_2)$: once again, this is well defined a.e. (M). Since $w_2 \leq w_1$, $J(w_2) \leq J(w_1)$ by (2.1c) and (2.2). Thus $w_3 \geq w_2$. Since $J(w_2) \geq 0$, $w_3 \leq V\mu = w_1$. We have proved that $w_2 \leq w_3 \leq w_1$. This alternating or oscillating behavior continues. By induction, define $w_{k+1} = VH(w_k)$. Note that w_{k+1} is well defined a.e. (M).

(2.5) LEMMA. Assume $w_2 \leq \cdots \leq w_k \leq w_{k+1} \leq \cdots \leq w_1$. Then $w_2 \leq w_{2k} \leq w_{2k+2} \leq w_{2k+3} \leq w_{2k+1}$.

PROOF. The lemma follows immediately from these observations:

(i) $J(w_{2k+1}) \leq J(w_{2k-1})$ implies $w_{2k+2} \geq w_{2k}$.
(ii) $J(w_{2k+1}) \geq J(w_{2k})$ implies $w_{2k+2} \leq w_{2k+1}$.
(iii) $J(w_{2k+2}) \leq J(w_{2k+1})$ implies $w_{2k+3} \geq w_{2k+2}$.
(iv) $J(w_{2k+2}) \geq J(w_{2k})$ implies $w_{2k+3} \leq w_{2k+1}$. Q.E.D.
Therefore, the sequence \((w_{2k})\) increases to a function \(u_1\), while the sequence \((w_{2k+1})\) decreases to a function \(v_1\) with \(-\infty < u_1 \leq v_1 < \tilde{V}\mu\) a.e. \((M)\). (Note that (2.4) and (1.5) imply strict inequality in \(v_1 < \tilde{V}\mu\).) Since \(w_{2k+1} = \tilde{V}\mu - VJ(w_{2k})\), the monotone convergence theorem yields \(v_1 = \tilde{V}\mu - VJ(v_1)\). Since \(J(v_1) \geq J(w_{2k+1})\) and \(VJ(v_1) < \infty\) a.e. \((M)\) by (2.4), we may apply the dominated convergence theorem to the equality \(w_{2k+2} = \tilde{V}\mu - VJ(w_{2k+1})\) to obtain \(u_1 = \tilde{V}\mu - VJ(v_1)\). Q.E.D.

The measure \(\mu\) can always be decomposed as \(r \cdot dM + \mu^s\), where \(\mu^s\) is singular with respect to \(M\) and \(r \geq 0\). Assume

\[
(2.6) \quad r > 0 \quad \text{on} \quad F.
\]

(2.7) LEMMA. Let \(a\) and \(b\) be two functions on \(F\) so that \(u_1 \leq a \leq b \leq V\mu\), \(M(b > a) > 0\), and suppose that \(a = V\mu - VJ(b)\) and \(b = V\mu - VJ(a)\). Then \(b - a > 0\) (remember \(-\infty < \infty = 0\)) and \(b > 0\) on \(F\).

PROOF. By hypothesis, \(M(b - a = V[J(b) - J(a)] > 0) > 0\), and \(b \geq a\), so \(M(J(b) > J(a)) > 0\) and \(J(b) \geq J(a)\). Therefore, \(b - a = V[J(b) - J(a)] > 0\) since \(v(\cdot, \cdot) > 0\). Since \(b + VJ(a) = \tilde{V}\mu\), we have that \(VJ(a) \leq \tilde{V}\mu\) on \(b > 0\). Thus we have \(VJ(a) \leq \tilde{V}\mu\) on \(a > 0\) \(\supset \{J(a) > 0\}\) since \(a \leq b\). By (1.14), \(VJ(a) \leq \tilde{V}\mu\) on \(F\). Thus \(b\) must be nonnegative. Now assume \(\{b = 0\}\) is nonempty, and let \(z \in \{b = 0\}\). Then we have \(V\mu(z) = VJ(a)(z) < \infty\). Since \(b - a > 0\), \(a(z) < 0\) and \(VJ(b)(z) > V\mu(z)\). Note that \(\{VJ(b) > V\mu\}\) is a finely open set (for the fine topology generated by the resolvent \((V^\alpha)\)). By (A.1) and (2.6), \(V\mu(w) < VJ(a)(w)\) for some \(w\) in \(F\). But this contradicts \(b > 0\). Therefore, \(\{b = 0\} = \emptyset\). Q.E.D.

The next hypothesis will be used in a crucial way in the main theorem in this section. It will be discussed further in the remark following it and also in §3. See also the discussion in the introduction. Assume:

(a) There are positive functions \(\rho_{kj}: F \to \mathbb{R}\) so that

(i) \(J(c + \gamma)(x_k) - J(c)(x_k) \geq \sum_{j=1}^n \rho_{kj}(x_j)\gamma(x_j)\) a.e. \((M)\) whenever \(x_j = e_jx\) and \(c\) and \(\gamma\) are functions with \(u_1^+ \leq c \leq c + \gamma \leq v_1\);

(ii) Whenever \(K \subset E_k\) is compact, \(\text{inf}\{\rho_{kk}(z): z \in K\} > 0\).

(Notation: Let \(\Phi(\gamma)(x_k) = \sum_{j=1}^n \rho_{kj}(x_j)\gamma(x_j)\).)

(2.8) (b) There is a nonnegative bounded function \(f\) on \(F\) and numbers \(\delta > 0\) and \(\pi > 0\) so that

(i) the set \(\{f > 0\}\) is contained in a compact set \(K_f\) and \(K_f \subset \{u_1 > \delta\} \cap \{v_1 < \pi\}; M(f > 0) > 0\).

(ii) \(f \leq J(v_1 - Vf) - J(u_1)\).

(iii) \(f \leq \Phi(V[\Phi(Vf)1_{\{u_1 < Vf\}}])\).

REMARK. Condition (2.8b(iii)) is the difficult one to fulfill, consistent with achieving (1.13). Let us show that (2.8b(i)) and (2.8b(ii)) can always be achieved. If \(u_1 < v_1\), we may choose \(\delta > 0\) and \(\pi > 0\) so that \(M(u_1 > \delta, v_1 < \pi) > 0\). Let \(g\) be any bounded nonnegative function so that \(\{g > 0\}\) has compact closure in \(F\) contained in \(\{u_1 > \delta\} \cap \{v_1 < \pi\}\). \(Vg\) is everywhere finite on \(F\), \(M(g > 0) > 0\) and \(J(v_1) - J(u_1) \geq g\). Let \(0 < p < 1\). Then \(|J(v_1 - Vpg) - J(u_1)| \geq \Phi(v_1 - u_1 - Vpg)\) on \(\{v_1 - u_1 \geq Vpg\}\). Recall that \(v_1 - u_1 = V[J(v_1) - J(u_1)]\). Since (1.6, 2.1c) imply \(\text{inf}\{(v_1 - u_1)(z): z \in \{g > 0\}\} > 0\), we also have that \(\text{inf}\{(J(v_1) - J(u_1))(z): z \in \{g > 0\}\} = c > 0\). If we choose \(p\) so small that \(pg < J(v_1) - J(u_1)\) on \(\{g > 0\}\),
we have that $\Phi(v_1 - u_1 - Vpg) > d > 0$ on $\{g > 0\}$ since $\inf\{\rho_{kk}(z): z \in \{g > 0\} \cap E_k\} > 0.1 \leq k \leq n$. Thus, by taking an even smaller p so that $pg < d$, we obtain $pg \leq J(v_1 - Vpg) - J(u_1)$, and we set $f = pg$.

(2.9) Theorem. Assume (2.1), (2.4), (2.6), and (2.8). There is a function u so that $0 \leq u \leq V\mu$ and $u = V[\mu - G(\cdot, u(\cdot))]$.

Proof. The heart of this proof is a transfinite induction argument. We construct two collections of functions $(u_\gamma) \subset \mathcal{F}$ and $(v_\gamma) \subset \mathcal{F}$: they are indexed by the ordinals $\gamma \geq 1$.

Notation. Set $a_1 = -\infty$ and $b_1 = V\mu$. For every ordinal $\beta \geq 2$, set $a_\beta = \sup\{u_\gamma: 1 \leq \gamma < \beta\}$, and set $b_\beta = \inf\{v_\gamma: 1 \leq \gamma < \beta\}$.

For each ordinal $\beta \geq 1$, define the proposition $\phi(\beta)$ to be the statement:

\[(2.10) \text{ If } M(a_\beta < b_\beta) > 0, \text{ then there are functions } u_\beta \text{ and } v_\beta \text{ so that } a_\beta \leq u_\beta \leq v_\beta \leq b_\beta \leq V\mu, M(v_\beta < b_\beta) > 0, u_\beta = V[\mu - J(v_\beta)], \text{ and } v_\beta = V[\mu - J(u_\beta)]. \]

We have already verified the truth of $\phi(1)$ in Proposition (2.3). Let us assume $\phi(\gamma)$ is true for every $\gamma < \beta$, and prove $\phi(\beta)$ is true. Since $b_\gamma = V\mu - VJ(a_\gamma)$ for every $\gamma < \beta$, the monotone convergence theorem lets us conclude that $b_\beta = V\mu - VJ(a_\beta)$. Similarly, the dominated convergence theorem lets us conclude that $a_\beta = V\mu - VJ(b_\beta)$. Set $a = a_\beta$ and $b = b_\beta$, and assume $M(a < b) > 0$. By (2.7), $b > a$ and $b > 0$ on F.

Let f be the function chosen in (2.8b). We now show that for some p with $0 < p < 1$, pf satisfies the conditions in (2.8b) if we replace u_1 with a and v_1 with b. (We essentially repeat the argument given in the remark following (2.8).)

First note that $\{pf > 0\} \subset \{u_1 > \delta, v_1 < \pi\} \subset \{a > \delta, b < \pi\}$, and $M(pf > 0) > 0$. Second, since $\inf\{(b - a)(z) = V[J(b) - J(a)](z): z \in \{pf > 0\}\} > 0$, we can choose small so that $J(b) - J(a) > pf$ on $\{f > 0\}$. Thus $b - a - Vpf > c > 0$ on $\{pf > 0\}$. It follows that $\Phi(b - a - Vpf) > d > 0$ on $\{pf > 0\}$ since $\inf\{\rho_{kk}(z): z \in \{pf > 0\} \cap E_k\} > 0.1 \leq k \leq n$. We may take an even smaller p so that $\Phi(b - a - Vpf) > pf$ and we obtain $pf \leq J(b - Vpf) - J(a)$. Third, and finally, we show that $pf \leq \Phi(V[\Phi(Vpf)1_{(a > Vpf)}])$. Multiplying (2.8b(iii)) by p yields $pf \leq \Phi(V[\Phi(Vpf)1_{(a > Vpf)}])$. Since $\{u_1 > Vf\} \subset \{a > Vpf\}$, we have the result.

Set $\varepsilon = Vpf$, $w_1 = b - \varepsilon$, $w_2 = VH(w_1)$, and $w_3 = VH(w_2)$.

(2.11) Lemma. $a \leq w_2 \leq w_3 \leq w_1$.

Proof. Since $pf \leq J(b - Vpf) - J(a)$, $V[J(b) - J(a)] \geq \varepsilon$, or $b - \varepsilon \geq a$. Thus $w_1 \geq a$. To obtain $w_2 \geq a$, we need $VH(b - \varepsilon) \geq VH(b)$, or $V[J(b) - J(b - \varepsilon)] \geq 0$. This holds since J is increasing and $b \geq b - \varepsilon$. To obtain $w_2 \leq w_1$, we need $VH(a) - VH(b - \varepsilon) \geq \varepsilon$, or $V[J(b - \varepsilon) - J(a)] \geq Vpf$. This holds since $pf \leq J(b - Vpf) - J(a)$. Since $w_2 \leq w_1$, we obtain $w_3 \geq w_2$. Finally, to obtain $w_3 \leq w_1$, we need $VH(w_2) \leq b - \varepsilon$, or $VH(VH(b - \varepsilon)) \leq b - \varepsilon$. That is, we need $V[\mu - J(VH(b - \varepsilon))] \leq V[\mu - J(a)] - \varepsilon$, or $VJ(a) + Vpf \leq VJ(VH(b - \varepsilon))$. To obtain this, we need only have $J(a) + pf \leq J(VH(b - \varepsilon))$, or $pf \leq J(VH(b - \varepsilon)) - J(a) = J(a + V[J(b - J(b - \varepsilon))]) - J(a)$. By (2.8a), it suffices to have $pf \leq \Phi(V[J(b) - J(b - \varepsilon)])$ on $\{u_1 > 0\} \subset \{a > 0\}$. Applying (2.8a) again, we see
it suffices to have \(pf \leq \Phi(V[\Phi(Vpf)1_{(b>Vpf)})] \). Since \(\{Vpf < a\} \subset \{Vpf < b\} \), we see that it suffices to have

\[
(2.12) \quad pf \leq \Phi(V[\Phi(Vpf)1_{(Vpf<a)})].
\]

We showed before (2.11) that \(f \) has this property. Q.E.D.

Now we can set \(Wk+1 = VH(Wk) \) as we did earlier in this section. The proof of Proposition (2.3) shows that we obtain functions \(u_\beta \leq v_\beta \) so that \(v_\beta = V\mu - VJ(u_\beta) \) and \(u_\beta = V\mu - VJ(v_\beta) \): we have verified \(\phi(\beta) \). Choose a finite measure \(N \) on \((F, \mathcal{F})\) which is equivalent to \(M \) so that \(N(v_1-u_1) < \infty \). The sequence \(\pi(\beta) = N(v_\beta - u_\beta) \) is a positive and strictly decreasing sequence. Thus \(\pi(\beta) = 0 \) for some countable ordinal \(\beta \). That is, there is a \(\beta \) so that \(u_\beta = b_\beta = v_\beta = u \). But then \(u = V\mu - VJ(u) \).

By (2.7), \(u \geq 0 \), so we have \(u = V\mu - VG(\cdot, u(\cdot)) \). This concludes the proof of (2.9). Q.E.D.

3. The final result and discussion of hypotheses. In this section, we again assume the notations and hypotheses of §1. This next result drops the hypothesis (2.6) (but adds some others!).

(3.1) THEOREM. Assume (2.1) and suppose there is a decreasing sequence of functions \(h_k \) on \(F \) so that

(i) \(h_k > 0 \) on \(F \);
(ii) \(\lim_{k \to \infty} Vh_k = 0 \);
(iii) \(M(V(\mu + h_k) > VG(V(\mu + h_k))) > 0 \).

Assume (2.8). (Note: the function \(f \) may vary with \(k \).) Then there is a function \(u \geq 0 \) with \(u = V[\mu - G(\cdot, u(\cdot))] \).

PROOF. By (iii), \(JV(\mu + h_k) = VG(V(\mu + h_k)) < \infty \) on a set of positive measure, and hence a.e. \((M)\). Let \(\Phi = J(V(\mu + h_1)) \), so \(V\Phi < \infty \) a.e. \((M)\). For each \(k \) the hypotheses of Theorem (2.9) are satisfied, so there is a function \(u_k \) with \(0 \leq u_k \leq V(\mu + h_k) \) and \(u_k = V[\mu + h_k - J(u_k)] \). Since \(u_k \leq V(\mu + h_k) \) and \(J(u_k) \leq \Phi \), so \(c_k = J(u_k)/\Phi \) is a bounded sequence in \(L^\infty(M) \). By Alaoglu’s theorem, there is a subsequence \(c_{k(l)}(g) \Phi \) converges to \(\int wgdM \) for every \(g \in L^1(M) \). For almost every \(z, v(z, \cdot) \Phi(\cdot) \in L^1(M) \), so \(V\Phi c_{k(l)} = JV(u_{k(l)}) \) converges to \(Vw \). Since \(u_{k(l)} = V[\mu + h_{k(l)} - J(u_{k(l)})] \), \(u_{k(l)} \) must converge (a.e.) to a function \(u \geq 0 \). Since \(J(u_k) \leq \Phi \) and \(V\Phi < \infty \) a.e. \((M)\), we may apply the dominated convergence theorem to conclude \(\lim JV(u_{k(l)}) = JV(u) \), and we have proved that \(u = V[\mu - J(u)] \). Q.E.D.

Theorem (3.1) is perhaps not quite as satisfying as the result in §2 since \(u \) is obtained by a compactness method instead of monotone approximation. One might hope that since the \(h_k \) decrease, the \(u_k \) should also decrease. This does not seem to be the case, however, and one must be careful to recall that \(J \) is not a local function of its argument. For example, suppose we try to prove the \(u_k \) decrease. By subtracting, we obtain \(u_k - u_{k+1} + V[J(u_k) - J(u_{k+1})] = V[h_k - h_{k+1}] \), so \(V[J(u_k) - J(u_{k+1})] \leq V[h_k - h_{k+1}] \) on \(\{u_k > u_{k+1}\} \). At this point it is tempting to say \(\{J(u_k) > J(u_{k+1})\} \subset \{u_k > u_{k+1}\} \) (which is incorrect), so the maximum principle yields \(V[J(u_k) - J(u_{k+1})] \leq V[h_k - h_{k+1}] \) everywhere. This would lead to the (incorrect) conclusion that \(u_k > u_{k+1} \).

We now discuss the hypotheses in §§1 and 2.
Hypotheses (1.0) through (1.3), (1.5). These hypotheses are quite reasonable and cover a large class of elliptic and integrodifferential operators.

Hypothesis (1.13). The condition $V \Psi < \infty$ is necessary to insure we have a nontrivial potential theory: whether or not it is satisfied depends on how large the α_{kj} are.

Hypothesis (2.1). Parts (a) and (b) are simple requirements. Part (c) is the tricky one. Note that $V \mu$ depends on the α_{kj}; as the α_{kj} grow, so does $V \mu$. There are two situations in which this hypothesis might be easily satisfied. First, if $\partial f_k / \partial x_j > 0$ for all k and j, then the α_{kj} can be chosen to be zero. In this case, (1.13) is instantly satisfied. Or it may be the case that $\partial f_k / \partial x_j$ is bounded below, say by ξ_{kj}. If $\xi_{kj} < 0$, set $\alpha_{kj} = -\xi_{kj}$; otherwise, set $\alpha_{kj} = 0$. In this case, (1.13) may or may not be satisfied. In the general case, it is best to adopt the following philosophy. Having chosen $\alpha_{kj} \geq 0$ so that (1.13) holds, hypotheses (2.1), (2.4), and (2.8) delineate a class of measures μ for which (1.7) can be solved. It would be nice to have a deeper understanding of the relationships between (2.1) and (1.13).

Hypothesis (2.4). This is an interesting and suggestive one. If $V \mu \leq VG(V \mu)$ everywhere, it is known in probability and potential theory that μ is a balayage of $G(V \mu)$. It is easy to cite at least one condition forbidding this and so guaranteeing that (2.4) holds: if μ charges a polar set (i.e., a set contained in the infinities of an excessive function), then it cannot be the balayage of a function (and note that $G(V \mu)$ is a function).

Hypothesis (2.8). Part (a) is a simple requirement which can always be achieved by increasing the α_{kk} slightly if necessary. Part (b) is a nontrivial assumption. Parts (i) and (ii) can always be achieved, as is shown in the Remark following the hypothesis. Part (iii) is the hard part. Since $u_1 \geq a$, it may sometimes be easier to check (iii) with a replacing u_1. Notice that while hypotheses (2.1) and (2.4) seem pretty close to optimal for our presentation, hypothesis (2.8) is really more than is needed. We present it in this form as an attempt to render a complicated result a bit more palatable. By following the proof of (2.9), the reader will see exactly what is needed.

4. Extensions. The methods and theorems we have discussed can be extended to parabolic semigroups. For example, L_k could be $\partial / \partial t - \Delta$. Hypotheses (1.5) and (1.6i) fail in this case, but slight modifications to some of the proofs overcome these difficulties. It is also possible to solve infinite systems of semilinear equations using these methods. Once again, some slight modifications to some of the hypotheses are needed, and we leave these to the interested reader. It is an elementary exercise to reformulate all of these results to solve equations in which the local nonlinearities f_k are replaced with nonlocal nonlinearities of the form $f_k(D_1 u_1(x), \ldots, D_n u_n(x))$, where $f_k : \mathbb{R}^n \to \mathbb{R}$ and where $D_k = D_k(x, \cdot)$ is a positive kernel.

Appendix. At one crucial point in the proof of (2.7), we need the following fact. (All hypotheses and notations of §§1 and 2 are assumed here.)

(A.1) Proposition. Let $z \in \{ VJ(b) > V \mu \} = \{ a < 0 \} \subset \{ J(a) = 0 \}$. If $V \mu(z) = VJ(a)(z)$, then $V \mu(w) < VJ(a)(w)$ for some w in F.

This proposition depends on hypothesis (2.6), among others. There is undoubtedly a purely potential theoretic way to prove this result, but we resort to a proof using Markov processes. In order to do this, we apply some work of Bouleau [3].
Let \(h = U \Psi \): this function is finite on \(F \) by (1.13) and is bounded away from zero on compacts in \(F \) by (1.6i). Define two new kernels \(Y \) and \(C \) on \((F, \mathcal{F})\) by setting
\[Y(z, \cdot) = h^{-1}(z)U(z, \cdot) \]
and
\[C(z, \cdot) = B(z, \cdot)h(\cdot). \]
Recall that \(Y \) is the zero potential \(Y^0 \) of a sub-Markovian resolvent \((Y^\alpha)\) on \((F, \mathcal{F})\). Hypothesis (1.0) implies that \((Y^\alpha)\) is the resolvent of a right Markov process on \((F, \mathcal{F})\). For more information about \((Y^\alpha)\), see [6]. For information about right processes, see [5 and 2].

Now let \(\partial \) be a new point not contained in \(F \), set \(F' = F \cup \{\partial\} \), and \(\mathcal{F}' = \sigma(\mathcal{F}, \partial) \). Extend \((Y^\alpha)\) to \(\mathcal{F}' \) by setting
\[\alpha Y^\alpha(z, \{\partial\}) = 1 - \alpha Y^\alpha(z, F) \]
for every \(z \) in \(F \) and
\[\alpha Y^\alpha(\partial, \{\partial\}) = 1: \]
\((Y^\alpha)\) so extended is a Markovian resolvent on \((F', \mathcal{F}')\).

Extend \(C \) to \(F' \) by setting
\[C(z, \{\partial\}) = 0 \]
for every \(z \) in \(F \) and
\[C(\partial, F') = 0. \]

Note that if we define
\[Z^\alpha = \sum_{k=0}^{\infty} (Y^\alpha C)^k Y^\alpha, \]
then \(Zf = h^{-1}V f \) for every \(f \in p\mathcal{F}' \) with \(f(\partial) = 0 \). Let us compute the function

\[
 b = \sum_{k=0}^{\infty} (Y C)^k 1_{F'} = 1_{F'} + h^{-1} \sum_{k=1}^{\infty} (UB)^k U \Psi \leq 1_{F'} + h^{-1} V \Psi < \infty.
\]

The function \(b \) is invariant for the resolvent \((Z^\alpha)\) [3]. Bouleau [3] shows that since \(b \) is finite, the resolvent \((D^\alpha)\) defined by
\[D^\alpha(z, \cdot) = b^{-1}(z)Z^\alpha(z, \cdot)b(\cdot) \]
is the resolvent of a right Markov process \(X = (\Omega, G, G_t, X_t, \theta_t, (P_x)_{x \in F'}) \). We use this process to prove (A.1). Note that
\[Df = b^{-1} Z(bf) = b^{-1} h^{-1} V(bf) \],
so \(G = \{V J(b) > V \mu\} = \{D(b^{-1} J(b)) > D(b^{-1} \mu)\} \).
This set is finitely open for \(X \). What does this mean? It means that if we define \(T = \inf\{t > 0: X_t \in G^c\} \), then \(T > 0 \) \(P^z \) almost surely whenever \(z \in G \). Recall that \(\mu = r \cdot dM + \mu^s \) and \(r > 0 \) on \(F \). By the strong Markov property,

\[
 E^z[Db^{-1}r(X_T)] = E^z \int_T^\infty b^{-1} r(X_s) ds < E^z \int_0^\infty b^{-1} r(X_s) ds = Db^{-1} r(z),
\]
since \(b^{-1} r > 0 \) and \(T > 0 \) \(P^z \) almost surely. Thus \(E^z[Db^{-1} \mu(X_T)] < Db^{-1} \mu(z) = D(b^{-1} J(a))(z) \). Now compute

\[
 E^z[D(b^{-1} J(a))(X_T)] = E^z \int_T^\infty b^{-1} J(a)(X_s) ds = E^z \int_0^\infty b^{-1} J(a)(X_s) ds
\]

\[
= D(b^{-1} J(a))(z),
\]

since \(J(a)(X_s) \) is zero provided \(s < T \) (recall \(J(a) = 0 \) on \(G \)). Thus we see

\[
 E^z[Db^{-1} \mu(X_T)] < E^z[D(b^{-1} J(a))(X_T)],
\]

and so \(Db^{-1} \mu(w) < Db^{-1} J(a)(w) \) for some \(w \) in \(F \). That is, \(V \mu(w) < V J(a)(w) \).

Q.E.D.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32611