Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Bordism of semifree circle actions on Spin manifolds

Author: Lucília Daruiz Borsari
Journal: Trans. Amer. Math. Soc. 301 (1987), 479-487
MSC: Primary 57R85; Secondary 57R20, 58G10
MathSciNet review: 882700
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using traditional methods in bordism theory, an almost complete description of the rational bordism groups of semifree circle actions on Spin manifolds is given. The single remaining problem, to describe the ideal of $ \Omega _ \ast ^{{\operatorname{Spin}}}\, \otimes \,\mathbf{Q}$, generated by bordism classes of Spin manifolds admitting a semifree action of odd type, has been recently solved by S. Ochanine $ [\mathbf{O}]$.

References [Enhancements On Off] (What's this?)

  • [A-B] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes, II. Applications, Ann. of Math. (2) 88 (1968), 451-49l. MR 0232406 (38:731)
  • [A-H] M. Atiyah and F. Hirzebruch, Spin-manifolds and group actions, Essays on Topology and Related Topics, Springer, 1970, pp. 18-28. MR 0278334 (43:4064)
  • [B] L. D. Borsari, Bordism groups of semi-free circle actions on Spin manifolds, Ph.D. thesis, Rutgers Univ., October 1985.
  • [C] P. E. Conner, Differentiable periodic maps, Lecture Notes in Math., vol. 738, Springer-Verlag, 1979. MR 548463 (81f:57018)
  • [C-F] P. E. Conner and E. E. Floyd, Torsion in SU-bordism, Mem. Amer. Math. Soc. No. 60, 1966. MR 0189044 (32:6471)
  • [C-H-S] S. S. Chern, F. Hirzebruch and J. P. Serre, On the index of a fibered manifold, Proc. Amer. Math. Soc. 8 (1957), 587-596. MR 0087943 (19:441c)
  • [K] Y. Kitada, Semi-free circle actions on $ \operatorname{Spin}^{c}$-manifolds, RIMS(Kyoto) 10 (1974), 601-607. MR 0372887 (51:9091)
  • [L-S] P. Landweber and R. E. Stong, Circle actions on Spin manifolds and characteristic numbers (to appear). MR 948178 (90a:57040)
  • [L-W] C. Lazarov and A. G. Wasserman, Free actions and complex cobordism, Proc. Amer. Math. Soc. 47 (1975), 215-217. MR 0350759 (50:3251)
  • [M-S] J. W. Milnor and J. D. Stasheff, Characteristic classes, Princeton Univ. Press, Princeton, N. J., 1974. MR 0440554 (55:13428)
  • [O] S. Ochanine, Sur les genres multiplicatifs défini par des intégrales (to appear).
  • [St] R. E. Stong, Notes on cobordism theory, Math. Notes, Princeton Univ. Press, Princeton, N. J., 1968. MR 0248858 (40:2108)
  • [Sz] R. H. Szczarba, The tangent bundle of fibre spaces and quotient spaces, Amer. J. Math. 86 (1964), 685-697. MR 0172303 (30:2522)
  • [U] F. Uchida, Cobordism groups of semi-free $ {S^1}$- and $ {S^2}$-actions, Osaka J. Math. 7 (1970), 345-351. MR 0278338 (43:4068)
  • [W] E. Witten, Fermion quantum numbers in Kaluza-Klein theory, Shelter Island II: Proc. 1983 Shelter Island Conf. on Quantum Field Theory and the Fundamental Problems of Physics (Eds., R. Jackin, N. N. Khari, S. Weinberg and E. Witten), MIT Press, Cambridge, Mass., 1985, pp. 227-277. MR 830167 (87f:81144)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R85, 57R20, 58G10

Retrieve articles in all journals with MSC: 57R85, 57R20, 58G10

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society